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Synopsis 

 A formula for absolute scattering power is derived to include spot fading due to 

radiation damage, and the crystal volume needed to collect diffraction data to a given 

resolution calculated. 
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Abstract  

In this work, classic intensity formulae were united with an empirical spot fading 

model to calculate the diameter of a spherical crystal that will scatter a desired number of 

photons per spot at a desired resolution over the radiation damage-limited lifetime.  The 

influences of molecular weight, solvent content, Wilson B factor, X-ray wavelength and 

attenuation on scattering power and dose were all included.  Taking the net photon count 
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in a spot as the only source of noise, a complete data set to 2 Å resolution was predicted 

to be attainable from a perfect lysozyme crystal sphere 1.2 micrometers in diameter and 

two different models of photoelectron escape reduced this to 0.5 or 0.34 micrometer.  

These represent 15 to 700 fold less scattering power than the smallest experimentally-

determined crystal size to date, but the gap was shown to be consistent with the 

background scattering level of the relevant experiment.  These results suggest that 

reduction of background photons and diffraction spot size on the detector are the 

principal paths to improving crystallographic data quality beyond current limits. 

 

1. Introduction  

 The last 15 years have seen many experimental estimates of how small a protein 

crystal can be and still yield a complete data set (Gonzalez & Nave, 1994; Glaeser et al., 

2000; Teng & Moffat, 2000, 2002; Facciotti et al., 2003; Sliz et al., 2003; Li et al., 2004; 

Nelson et al., 2005; Sawaya et al., 2007; Coulibaly et al., 2007; Standfuss et al., 2007; 

Moukhametzianov et al., 2008; reviewed by Holton, 2009), and this size has been 

decreasing as technology improves.  But is there a theoretical limit?  The work presented 

here establishes a firm theoretical framework for computing the absolute signal available 

from very small macromolecular crystals, and every effort is made to explicitly and 

unambiguously spell out the definitions and derivations.  The International Tables for 

Crystallography (Wilson & Prince, 1999) contains most of the critical pieces of the 

puzzle assembled here, and the original references are spread out over nearly a century of 

literature.   



 

 3 

Here we endeavor to keep the theory general and independent of the limitations of 

current diffraction hardware.  For example, the time-honored practice of recording the 

three-dimensional diffraction pattern on as few images as possible was not simply an 

effort to save money on film, but to minimize noise intrinsic to the detection process such 

as “fog” on film or the read-out circuit of a charged coupled device (CCD). Counting 

detectors such as multi-wire (Cork et al., 1974) and pixel arrays (Kraft et al., 2009) do 

not have this kind of noise, and the optimal data collection strategy with these detectors is 

different (Xuong et al., 1985; Belrhali et al., 2007).  For simplicity in the present work, 

we considered the X-ray detector and indeed the entire diffractometer to be an ideal 

device: subject only to the shot noise of the net spot photons themselves (the square root 

of the number of counts).  All other sources of noise including background scattering 

were neglected until §3.2. 

The formula for the integrated intensity of a spot was introduced by Darwin 

(1914), but much subsequent work was required to fill out the original theory.  For 

example, Darwin’s variable “f” required the development of quantum theory to explain 

its observed value (Debye, 1915; 1988). The resulting orbital shapes (Slater, 1929) led 

directly to the cross sections needed to compute absorption effects in the 1960s, and 

steady improvements continue to this day (Hubbell, 2006).  Only recently has it become 

clearly established that radiation damage at cryogenic temperatures is proportional to 

dose (Henderson, 1990; Gonzalez & Nave, 1994; Glaeser et al., 2000; Sliz et al., 2003; 

Leiros et al., 2006; Owen et al., 2006; Garman & McSweeney, 2006; Garman & Nave, 

2009; Holton, 2009), and this understanding enabled the present work. 
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The intensity of a Bragg spot is not simply the square of the structure factor but 

depends on several other factors including exposure time, crystal volume and the 

geometry of diffraction.  Consequently, the absolute intensity of a spot in photons (which 

determines the maximum possible signal-to-noise ratio) depends on exactly where the 

spot falls on the detector surface.  Algorithms for computing these intensity “correction” 

factors are encoded into most data processing programs, but the source codes are not 

always available and in many cases the implemented corrections apply only to particular 

camera geometries.  Therefore, the reproducibility and generality of the results presented 

here requires a clear description of each correction factor, and we begin by defining the 

relevant coordinate system. 

 

2. Methods 

2.1 Coordinate system  

 There are many possible ways to assign x-y-z coordinates to a diffractometer and 

unfortunately most of them have been employed at one time or another and few data 

processing programs share exactly the same convention.  Here we will adopt a “classic” 

coordinate system essentially identical to that described in Arndt and Wonacott (1977) 

chapter 7 which is also the coordinate system used by the data processing program 

MOSFLM (Leslie, 2006).  In this system, x is the direction of the X-ray beam, z is the 

(horizontal) spindle axis and y is “up” (opposing gravity), or perpendicular to the page in 

Fig. 1.   
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2.2 Spot Intensity  

 Typically, crystallographic data processing and model refinement programs 

assign an arbitrary “scale factor” for the observed spot intensities to put them on the same 

scale as the structure factors calculated from the model, but the exact relationship 

between the intensity of a fully-recorded spot and the square of the structure factor is 

given by Darwin’s formula (Darwin, 1914, 1922; Blundell & Johnson, 1976), and 

instructive re-derivations can be found in textbooks by James (1962) and Woolfson 

(1997).   

(1) 2
3
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where: 

I - integrated spot intensity (photons/spot) 

Ibeam - intensity of the incident beam (photons/s/m2) 

re - classical electron radius (2.818 x 10-15 m/electron) 

Vxtal - illuminated volume of the crystal (in m3)  

Vcell - volume of the crystal unit cell (in m3) 

λ - X-ray wavelength (in m) 

ω - angular velocity of the crystal (radians/s, §2.8) 

L - Lorentz factor (speed/speed, §2.3) 

P - polarization factor (photons/photons, §2.4) 

A - X-ray transmittance of the path through the crystal to the spot (photons/photons, 

§2.5) 

F - structure factor of the unit cell at the relp of interest (electron equivalents, §2.7) 

 

 The abbreviation “relp” is used to denote a particular point in reciprocal space, 

distinct from its symmetry mates (Ramachandran & Wooster, 1951; Helliwell, 1999), and 

here we use “spot” to refer to a single observation of a relp and “hkl” to indicate the sum 
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of all symmetry-equivalent spots.  Note that all quantities entered into Equation (1) are in 

meter-kilogram-second (MKS) units, including the x-ray wavelength (λ), and that the 

units of “intensity” for spots (photons/spot) are not the same as for the incident beam 

(photons/s/m2) nor classical electron scattering (photons/steradian).  Despite this, all of 

these quantities remain commonly referred to as “intensity”, leading to a considerable 

amount of confusion if the units are not given explicitly.  The change of units arises 

because the full spot intensity (photons/spot) is obtained by integrating over the relp as it 

moves through the Ewald sphere (Ewald, 1913; Arndt & Wonacott, 1977; Helliwell, 

1999) and therefore several geometric factors must be taken into account.   

Experimental confirmation of Darwin’s formula was presented by Moseley & 

Darwin (1913), Bragg et al. (1921a; 1921b; 1922), Compton & Freeman (1922) and 

many others since.  For an example calculation using Equation (1), consider a 100 µm 

diameter spherical protein crystal with all three unit cell edges 50 Å long.  Assume that 

for a particular relp at 2 Å resolution we have F = 170 electron equivalents (see §2.7) and 

further assume some crystal orientation that assigns L = 2.2, P = 0.92, and A = 96% to 

this relp (see §2.3, §2.4 and §2.5, respectively).  If the crystal rotates at 1°/s in a uniform 

beam of 1 Å X-rays with 1012 ph/s passing into the 100 µm diameter circular cross 

section of the crystal, then Equation (1) predicts an integrated full spot intensity of 27,251 

photons.  This calculation was found to be in remarkable agreement with experimentally 

observed spot intensities from a lysozyme crystal (not shown) at the protein 

crystallography beamline 8.3.1 at the Advanced Light Source (instrument described by 

MacDowell et al., 2004).  Once Ibeam was calibrated (Owen et al., 2009), the discrepancy 
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between calculation and experiment was essentially the uncertainty in our visual estimate 

of Vxtal (about 15%).   

The flux density Ibeam is a constant in Equation (1), which implies that the crystal 

is “bathed” in a “flat top” or “top hat” beam.  Real X-ray beams are seldom this perfect, 

but any crystal in any beam may be formally broken up into tiny cubes small enough for 

Ibeam to be considered constant over each cube and the total spot intensity obtained by 

summing the results of Equation (1) for all the cubes.  However, if Ibeam is the same for 

every cube there is clearly no need to break up the crystal, and conversely if the crystal 

has constant thickness along the beam direction, then the average flux density 

experienced by the crystal (regardless of beam shape) may be used as Ibeam in Equation 

(1).  Only if both the crystal shape and the beam profile have irregular shapes does 

Equation (1) need to be integrated over the beam profile and crystal volume.  However, 

we show in §2.11 and Appendix C (supplemental) that the damage-limited spot intensity 

is independent of Ibeam, obviating the need to consider beam and crystal shapes, so for 

simplicity in this work we will consider a spherical crystal “bathed” in a top-hat beam. 

Note that Equation (1) does not depend on the mosaic structure of the crystal, and 

indeed a crystal consisting of a single mosaic domain or thousands of mosaic domains 

will still yield exactly the same integrated spot intensity (I), as long as the mosaic 

domains are small when compared with the attenuation depth (µ-1) of the X-rays in the 

crystal.  This depth is typically several mm for 1 Å X-rays (see the end of §2.5), and 

protein crystals this large are very rare, let alone single-domain crystals (Snell et al., 

2003).  A common misconception that protein microcrystals consisting of a single mosaic 

domain will produce more intense spots than expected from Darwin’s formula seems to 
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have arisen from the above-mentioned confusion over the several possible meanings of 

the word of “intensity” (discussed further under §2.7 below).  In truth, however, Equation 

(1) was derived for small and single-domain crystals, and also applies to the “ideally 

imperfect” case of a large crystal with many mosaic domains (Darwin, 1922).  Large 

single-domain crystals that approach the length scale of the attenuation depth of the X-

rays actually produce weaker spots than predicted by Equation (1), due to extinction 

effects (James, 1962; Woolfson, 1997; Sabine, 1999; Authier, 2004).   

 

2.3 Lorentz factor  

 The Lorentz factor L in Equation (1) is always greater than one and is the ratio of 

the speed of a rotating relp to the “penetration speed” at which it transits the Ewald 

sphere (Fig. 1).  This Lorentz factor in crystallography1 is not to be confused with its 

inverse, the Lorentz correction L-1 which data processing programs such as MOSFLM 

(Leslie, 2006) use to “correct” for this effect by multiplying observed integrated 

intensities by L-1.  The description of the Lorentz factor in the International Tables 

(Lipson & Langford, 1999) notes that some confusion has arisen over the definition of 

the Lorentz factor because Lorentz never published it.  Instead, it seems he wrote a letter 

to Debye who included it as a second note added in proof (Debye, 1914; 1988). 

Essentially, the Lorentz factor accounts for how the integrated intensity 

(photons/spot) of a relp will be higher if it moves slowly through the Bragg condition 

than if it moves quickly.  Indeed, the angular velocity of the crystal (ω), divided by the 

                                                 
1 Note that there is also a “Lorentz factor” in the Theory of Relativity, which has nothing to do with the 
Lorentz factor in crystallography, other than sharing the same namesake. 
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Lorentz factor (L) is the angular velocity of the relp as “seen” from the origin (see Fig. 1). 

This geometric correction is therefore grouped with other geometric factors in Equation 

(1) such as ω.  The cube of the wavelength (λ3) and one of the unit cell volume (Vcell) 

terms are also geometric corrections since these are involved in the size of the integration 

volume in reciprocal space (Woolfson, 1997 Ch. 6).   

It is instructive to consider the relationship between the Lorentz factor and the 

spot position on the detector.  This will obviously depend on the camera geometry, but in 

the common case where the crystal rotation axis is perpendicular to the X-ray beam, the 

Lorentz factor (L) is given by: 

(2a) 
22 2sin

1

ζθ
L

−
=  

(2b) ζ
┴
 = cos 2θ Zdet/Xstf 

where: 

θ - Bragg Angle 

ζ - λd*· ẑ  normalized projection of the relp vector onto the rotation axis (z) 

ζ
┴
 - ζ in terms of spot coordinates on a flat detector normal to the incident beam 

Zdet - coordinate of the diffraction spot on the detector along the axis parallel to the 

rotation axis (relative to beam center in mm) 

Xstf - sample-to-detector distance along direct beam path (in mm) 

 

The Bragg angle θ is defined as half of the angle between the direct beam path 

and the diffracted ray (see Fig. 1). Any given relp can be represented as a vector d*  that 

will always have length d* = 1/d where d is the d-spacing (in Å) of the spot.  No matter 

how the crystal is rotated, the d-spacing of a spot does not change.  The polar coordinate 

ζ (Helliwell, 1999) is calculated by taking the z-component of d*  ( ẑ is the unit vector 
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along the z-axis) and multiplying it by the X-ray wavelength λ (in Å).  This is because the 

z-component of d*  has dimensions of Å-1, and ζ must be dimensionless to be 

meaningfully related to sinθ.   

In the also common case where the detector is a flat plane and normal to the 

incident X-ray beam ζ may be conveniently replaced with ζ
┴
 from Equation (2b).  

However, moving the detector does not change L of a given relp and ζ
┴ 

serves simply as a 

convenient way to map the Lorentz factor onto the detector face.  For arbitrary detector 

positions, ζ must be computed from the spindle geometry, and in the general case of the 

beam not perfectly normal to the rotation axis, L must be calculated by taking the 

projection of the relp velocity vector along the diffracted ray (as shown in Fig. 1).   

Arbitrary rotations of the crystal will rotate the vector d*  by exactly the same 

angles, and if the crystal is oriented such that d*  approaches the spindle axis (z axis), it 

will eventually cross into a “blind region” (Arndt & Wonacott, 1977; Helliwell, 1999) 

where spindle rotation alone cannot bring the relp onto the Ewald sphere. As the relp 

approaches this blind region the denominator of Equation (2a) becomes smaller and 

smaller and the Lorentz factor approaches infinity.  Crossing into the blind region, the 

quantity under the square root in Equation (2a) becomes zero or less and the Lorentz 

factor becomes undefined.  

It is important to note however that an infinite Lorentz factor does not actually 

imply an infinite spot intensity.  This is because the relps are not infinitely sharp points, 

but rather do occupy a volume in reciprocal space that must pass completely through the 

Ewald sphere for Equation (1) to be valid.  In fact, the size and shape of this reciprocal-

space volume is simply the Fourier transform of the size and shape of the mosaic domain 
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producing it, but a detailed discussion of spot shapes is beyond the scope of this work. It 

will suffice here to say that the blind region is effectively enlarged by an angle 

comparable to the crystal mosaic spread, “swallowing” the infinite Lorentz factors.  The 

few spots that are close to the rotation axis will indeed have very large Lorentz factors, 

but also a very wide angular range of reflection (rocking width), so, on a typical 

diffraction image, these high-L spots are roughly the same intensity (photons/spot) as any 

other.  A discussion of rotation range will continue in §2.8. 

 

2.4 Polarization factor  

The polarization factor P is always less than one and accounts for losses of 

scattering efficiency when the incident and scattered beam polarization vectors do not 

line up.  That is, the E-vector of any electromagnetic wave must always be perpendicular 

to the direction of travel (Maxwell, 1865; Purcell, 1985), but this changes upon 

scattering.  First described for X-rays by Azaroff (1955) and re-formulated for 

synchrotron radiation by Kahn et. al. (1982), we use here the convenient expression given 

by Drenth (1999): 

(3) 2P = 1 + cos22θ - F cos 2α sin22θ  

where: 

P - polarization factor used in Equation (1) (photons/photons) 

θ - Bragg angle 

α - angle between the projections of the z axis and diffracted ray onto a plane 

normal to the incident beam 

F - degree of polarization 
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Note that the polarization factor P varies from spot to spot whereas F is the 

“polarization” entered into most diffraction data processing programs.  F ranges from 1 to 

0 to -1 as the beam polarization varies from “horizontal” (along the z axis) to unpolarized 

to “vertical” respectively.  The “plane normal to the incident beam” invoked to define α 

here is any plane parallel to both the y and z axes (see α in Fig. 1 as well as Arndt & 

Wonacott (1977)) .   

Many synchrotron-based diffractometers are designed with horizontal spindle 

axes (as defined here) because in this geometry the strong horizontal polarization of 

synchrotron radiation (F close to 1) tends to cancel the Lorentz factor and the “hole” in 

scattering due to polarization at 2θ = 90° and α = 0 coincides with the blind region (§2.3).  

However, the average value of the product LP is independent of F, (see §2.6) and 

therefore spindle orientation has no effect on average intensity (photons/spot) in a given 

resolution bin.  The only practical concern is that many data processing programs throw 

out spots with large L because such spots are very sensitive to small errors in crystal 

orientation, but even when L > 5 spots are rejected, the “penalty” of a vertical spindle (F 

= -1) in the 2 Å bin using 1 Å radiation is only 10% (not shown).  Indeed, for such data P 

ranges from 1 to 0.77 and this variation diminishes further as the pattern is compressed 

into lower angles at shorter wavelengths because Equation (3) depends purely on the 

geometry of the camera and not on the X-ray wavelength used.  The mechanical stability 

advantages of a vertical spindle for small crystals therefore come at only a marginal cost 

to photons/spot. 
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2.5 Sample attenuation  

 The attenuation factor A in Equation (1) is an average optical transmittance and is 

always less than one.  For full accuracy photons from each point in the X-ray source must 

be ray-traced to every accessible part of the crystal volume and from there out into the 

spot.  The transmittance along each path depends on the size, shape and atomic 

composition of the crystal and any other substances it traverses (including air).  The 

profile of the beam acts as a “weighting function” and A is the average transmittance over 

all possible paths. Given the potential complexity of the shapes involved, the only general 

expression for A is the triple integral: 

(4)  

dxdydz...x,y,ztµx,y,ztµx,y,ztµy,zI
IV

A
xtal

looploopxtalxtalairairprof
beamxtal
∫∫∫ −−−−= ))()()(exp()(

1
 

Where: 

A - attenuation factor (photons/photons) 

Vxtal - volume of the crystal (m3) 

Ibeam - total intensity of the incident beam (photons/s/m2) 

Iprof - intensity of the beam profile at the coordinate 0,y,z (photons/s/m2) 

µx - attenuation coefficient of substance x; µx
-1 is the attenuation length (m) 

tx - component of total path taken by X-ray through substance x, via crystal 

coordinate x,y,z (m) 

 

The complexity arises because the scattering and attenuation processes must be 

co-integrated over the illuminated volume of the crystal (Vxtal).  The path taken by the 

incident beam is only important up to the point location of the “scattering event” and 

from there the materials between the scattering event and the location of the diffraction 

spot must be considered.  This integral can be solved analytically for the simple case of a 
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flat slab-shaped crystal with uniform µ, and the formula of this solution is presented in 

the International Tables (Maslen, 1999).  However, for anything other than a flat slab 

there is no analytic solution for Equation (4), and even a perfect sphere must be evaluated 

numerically.  Nevertheless, the sphere is a convenient “average shape” for a protein 

crystal and look-up tables are available for this integral (Dwiggins, 1975; Flack & 

Vincent, 1978; Maslen, 1999).  For the calculation at hand, we consider a spherical 

crystal of radius R with uniform attenuation coefficient µxtal in a uniform “flat top” beam 

and denote the total transmission of a beam diffracting at angle 2θ simply as: 

(5) A = Tsphere(2θ,µxtal,R) 

where: 

A - attenuation factor (photons/photons) 

Tsphere - numerical solution to Equation (4) for a sphere in a vacuum 

2θ - angle between incident and diffracted beams 

µxtal - attenuation coefficient of the crystal (m-1) 

R - radius of the spherical crystal (m) 

 

The value of µ for each substance is obtained using its density (ρ) and the 

tabulated X-ray cross sections (Storm & Israel, 1970; Berger & Hubbell, 1987; Creagh & 

Helliwell, 1999) of the chemical elements comprising it (reviewed by Hubbell, 2006).  A 

convenient program for accurate calculation of µ for a particular protein crystal is 

RADDOSE (Murray et al., 2004; Paithankar et al., 2009), and for the calculations 

presented here we use an average empirical formula for protein: H49.8C31.8N8.56O9.54S0.249 

determined from a survey (not shown) of the Protein Data Bank (Berman et al., 2002).  

Taking 1 Å X-rays for example, values for µ in protein, water, and 50% solvent protein 

crystal used in this work are 2.78, 2.85 and 2.81 cm-1 respectively.  This yields an 
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attenuation depth µxtal
-1 = 3.6 mm, so a 2.5 mm thick protein crystal is required to reduce 

a spot intensity (photons/spot) by half, and a 100 µm crystal reduces no spot intensity by 

more than ~2.7%.  Therefore A is a small correction in typical cases, and only becomes 

significant if strongly absorbing atoms are soaked into the crystal (see Holton, 2009), or 

if long wavelength X-rays are used.  For example, at the sulfur K edge (5 Å wavelength), 

µxtal
-1 ≈ 32 µm and attenuation can reduce the spot intensities from a 100 µm crystal by as 

much as 96% (A = 0.04). 

 

2.6 Average Lorentz-polarization factor and completeness 

 Since we are concerned here with the average value of a spot intensity 

(photons/spot) at a given resolution, we must know the average value of the product of 

the Lorentz and polarization factors (LP).  It is also important to account for relps that fall 

into the “blind region” (§2.3) as these will not contribute to the merged signal of an hkl 

index at one wavelength, but may contribute at another.  The fraction of all relps in a 

given resolution bin that can be observed by rotating about a single axis (fobs) is simply 

cosθ (see Appendix A, supplemental), and if we average the product of Equations (2a) 

and (3) for these accessible relps (Appendix B, supplemental) we obtain the exact 

expressions: 

(6a) 






 −=
2

2sin

2sin

1

2

θ
θ

π
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where: 



 

 16 

fobs - fraction of relps at this resolution that will cross the Ewald sphere using a single 

axis (cosθ) 

θ - the Bragg angle 

 

Note the use of angle brackets 〈〉 to denote average values, and that 〈LP〉 and fobs depend 

only on the Bragg angle (θ), and thus are independent of wavelength (λ) and the degree of 

polarization F from Equation (3).  However, as Bragg’s law relates λ to θ, 〈LP〉fobs tends 

to cancel one of the λ terms in Equation (1), but not exactly. 

 

2.7 Average structure factor  

The “structure factor” was defined (Debye & Scherrer, 1918; Hartree, 1925; 

Coppens, 1999) as the ratio of the amplitude of an electromagnetic wave scattered by an 

object of interest to that of a single classical electron (Thomson, 1906; Woolfson, 1997 

Ch. 2; Maslen et al., 1999a), hence Thomson’s classical electron cross section (re
2) is 

included in Equation (1).  The F in Equation (1) is the structure factor of one unit cell, 

which must be isolated in space for the intensity (photons/steradian) to be computed 

directly from F.  The other terms in Equation (1) represent the ratio of intensity scattered 

from a single unit cell to that of the entire crystal.  

The apparent amplification from one Vcell term in Equation (1) is effectively 

cancelled by the average square structure factor 〈F2〉, which is proportional to Vcell when 

the number of atoms per unit volume is fixed. This cancellation arises because the 

average scattering from a macromolecule at d-spacings better than ~4 Å is essentially the 

same as that of a random distribution of atoms (Wilson, 1942, 1949; Shmueli & Wilson, 



 

 17 

1999), and the total structure factor of a random arrangement of atoms rapidly approaches 

the structure factor of one atom (ƒa) multiplied by the square root of the number of atoms.  

That is, when the scattered waves from a group of atoms are in no way “correlated” to 

each other the total scattered intensity (photons/s/steradian) is the sum of the intensities 

that would be seen from individual atoms, and the square root of this total intensity is (by 

definition) proportional to the structure factor of the group.  Conversely, if the atomic 

positions are perfectly correlated (such as in a regular lattice) then the amplitudes add in a 

non-random way and the intensity scattered in some directions (diffraction spots) 

becomes proportional to the square of the number of atoms.  It is important to remember 

that this intensity has units of photons/s/steradian, where steradians are the units of solid 

angle.  For example, 106 photons/s emitted in completely random directions are described 

by an “intensity” of 106/4π = 79577 photons/s/steradian, and a square detector pixel 100 

µm in size and 100 mm from the sample (10-6 steradian) will intercept about one photon 

every 12.6 seconds.  Although the intensity (photons/s/steradian) scattered by a crystal of 

N atoms can be very large, this is only true over a very small solid angle and as the size 

of the crystal (or mosaic domain) increases this solid angle becomes proportionally 

smaller.  In general, this patch of high intensity is much smaller than a pixel, but the 

observed intensity (in photons) is given by the integral of photons/s/steradian over the 

entire pixel and rocking width of the relp (Woolfson, 1997 Ch 2 and Ch 6).  The change 

in units whilst using the same word “intensity” has historically led to some confusion, no 

doubt due in part to Darwin’s formula appearing more than half a century before the first 

use of the word “pixel” in the scientific literature. 
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It is instructive here to examine how the terms in Equation (1) interrelate as the 

properties of the crystal change.  For example, as atoms are added to random locations in 

the unit cell (keeping Vcell fixed for the moment) the structure factor of the unit cell (F) 

increases as the square root of the number of atoms in the unit cell (Ncell) and hence the 

intensity of a fully-recorded spot (I, in photons) is proportional to Ncell.  Conversely, if 

Vcell is increased while keeping Vxtal and the total number of atoms in the crystal constant, 

then the number of unit cells (Vxtal/Vcell) decreases while Ncell increases.  This causes F to 

increase as the square root of Vcell, so F2 is proportional to Vcell and the net effect of 

reorganizing a fixed number of atoms into larger cells is that individual spot intensities 

decrease proportionally to Vcell.  Since the number of relps in a given volume of 

reciprocal space is also proportional to Vcell, the total summed intensity of all spots does 

not change, and remains proportional to the number of atoms in the X-ray beam 

regardless of how these atoms are divided into unit cells.  Another way to reach this same 

conclusion is by the simple fact of conservation of scattered photons: a given number of 

atoms will scatter a fixed number of photons, and this number is dictated by the elastic 

scattering cross section of these atoms.  The arrangement of the atoms effects the 

direction in which these photons are scattered, but cannot change their number, and in the 

limiting case of very small unit cells that have no relps intersecting the Ewald sphere, all 

of these photons are scattered in the forward direction (the relp with index hkl = 000). 

The number of scattering atoms per unit volume in protein crystals varies with 

solvent content because the atoms of disordered solvent contribute only very weakly to 

high-angle Bragg peaks (Tronrud, 1997; Afonine et al., 2005; Tronrud, 2007).  Therefore, 
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the number of atoms contributing to spots at a given resolution beyond ~4 Å can be taken 

as the number of ordered (protein) atoms in the unit cell: 

(7) 
aM

cell

a

r
ASUsymopcell MV

V

M

M
nnN ==  

Where: 

Ncell  - total number of ordered atoms in the unit cell (including hydrogen) 

nsymop - number of symmetry operators in the space group 

nASU - number of protein molecules in the asymmetric unit 

Mr - molecular weight of the protein (Daltons or g/mol) 

〈Ma〉 - number-averaged protein atom mass (Mr/Nprotein ~7.13 g/mol)  

Nprotein  - total number of ordered atoms in the protein (including hydrogen) 

Vcell - volume of the unit cell (in Å3) 

VM  - Matthews’s (1968) coefficient (Å3/Dalton) 

 

Since protein consists of more than one kind of atom, the effective per-atom structure 

factor ƒa is given by the number-weighted average of the square structure factors of each 

atom type: 

 

(8) ...fNfNfNfNfN HHOONNCCacell
22222 +++≅  

where: 

〈ƒa
2〉 - number-averaged squared atomic structure factor of protein (electron2) 

NEe  - number of ordered atoms of element Ee 

ƒEe - atomic structure factor of element Ee (electron equivalents) 

 

In this work, atomic form factors were calculated using the 5-Gaussian fit approximation 

used by the CCP4 Suite (1994; Winn, 2003) and tabulated in the International Tables of 

Crystallography Vol. C (Maslen et al., 1999b).  Given the atomic composition of protein 
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provided in §2.5, this average atomic structure factor of protein is roughly equivalent to 

that of boron (ƒa ~ 5 electrons for forward scattering). This is because half of the atoms in 

protein are hydrogen, and this brings down the number-averaged quantities: 〈ƒa
2〉 and 

〈Ma〉.  However, the quotient ƒN
2/14 is at worst 14% greater than 〈ƒa

2〉/〈Ma〉 between 1.5 

and 4 Å resolution, so if 14% error is tolerable then protein can be considered made of an 

equal mass of nitrogen.   

Note that Equation (8) only applies for ~4 Å resolution and better, where the 

approximations of Wilson (1942, 1949) hold, and recall that the structure factors F and ƒa 

depend on the d-spacing of the spot (d).  The contribution of each atom is also modified 

by an atomic B factor (Maslen et al., 1999a), identical to those listed in the Protein Data 

Bank (PDB) (Berman et al., 2002).  It is important to note that the B factor is the only 

model of intrinsic crystal disorder used in this work.  Although there is reason to believe 

that disorder in crystals is more complicated than this (Welberry, 2004), B factors remain 

the formalism for describing disorder in crystallographic refinement (Tronrud, 2007; 

Brunger, 2007; Murshudov et al., 1997; Murshudov et al., 1999; Winn et al., 2003; Zwart 

et al., 2008).  Fundamentally, Debye’s (1915) argument was that the effect of atomic 

displacements from their ideal lattice points is dominated by the mean square atomic 

displacement 〈ux
2〉, a result that Waller (1923; 1925) related to temperature and Ott 

(1935) derived rigorously (James, 1962).   B factors form a resolution-dependent 

“weight” for the contribution of each atom, and atoms with low B factors will contribute 

a larger fraction of the total scattering at high angles than atoms with high B factors.  

However, as long as the contribution of each protein atom is similar at a given resolution 

of interest, then we may substitute the Wilson B factor (Wilson, 1949; Shmueli & 
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Wilson, 1999) for all the atomic Bs and arrive at a general expression for the average 

square structure factor of a unit cell: 

 

(9) 
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Where: 

〈F2〉  - average value of the squared structure factor of the unit cell (electrons2) 

Vcell - volume of the unit cell (in Å3) 

VM  - Matthews’s (1968) coefficient (Å3/Dalton or Å3·mol/g) 

〈Ma〉 - number-averaged protein atom mass (Mr/Nprotein ~7.1 g/mol) 

〈ƒa
2〉 - number-averaged squared atomic structure factor of protein (electrons2) 

B - average (Wilson) B factor (Å2) 

θ - the Bragg angle 

λ - X-ray wavelength (Å) 

 

 Since 〈ƒa〉 and 〈Ma〉 are essentially constants for protein and VM also has a 

restricted range (Matthews, 1968; Kantardjieff & Rupp, 2003) it is readily apparent that 

substituting 〈F2〉 from Equation (9) for |F|2 in Equation (1) does indeed cancel one of the 

1/Vcell terms.  For example, if VM = 2.5 Å3/Da, d = 2.5 Å and B = 0, Equation (9) reduces 

to 〈F2〉 ≈ 0.2 Vcell. That is, given two protein crystals with the same Vxtal (and Wilson B 

factor) but one with Vcell twice that of the other, the average spot intensity from the large 

unit cell crystal will be half of that from the smaller unit cell crystal.  
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2.8 Exposure time and multiplicity 

 The exposure time (t) does not appear explicitly in Equation (1) because it is 

hidden in the rotation speed ω = ∆Φ/t where ∆Φ here is the rotation covered during an 

exposure (in radians).  What happens if the crystal is not rotated during the exposure?  

Does the spot intensity become infinite?  Of course not, but in reality it does approach the 

intensity of the incident beam as the mosaic spread approaches zero, the mosaic domain 

volume becomes large and the X-ray beam becomes perfectly monochromatic and 

parallel.  This limiting case is routinely achieved with the perfect silicon crystals used in 

monochromators where nearly 100% of X-rays at a desired wavelength are reflected, a 

treatment which requires the dynamical theory of diffraction (Authier, 2004).  Equation 

(1) is based on what is known as the kinematical approximation to the dynamical theory 

and assumes that the mosaic domains are small compared with the attenuation length of 

the X-rays in the crystal and that the drop in the main beam intensity due to diffraction is 

negligible, which is generally a very good assumption for protein crystals (see µ-1 values 

at end of §2.5). 

 What value then should we choose for ∆Φ?  It cannot be smaller than the mosaic 

spread if we are to fully-record a spot, but since we are interested in collecting a complete 

data set we must set ∆Φ to the full rotation range of the data set and set t to the total 

accumulated exposure time of the data set (tDS).  The average angular velocity for 

recording each spot is then simply ω = ∆Φ/tDS.  Now, several spots belonging to the same 

unique hkl index may be observed in a given data set, so an accounting must be made of 

the extra signal available from merging equivalent observations.  Any relp that is not in 

the blind region (see §2.3) will cross the Ewald sphere twice during a 360° rotation, as 
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will the Friedel mate. Therefore, a crystal belonging to a space group with nsymop 

symmetry operators will produce a total of 4× nsymop observations of each accessible 

unique hkl index (merging Friedel mates). For simplicity, we will use 360° for ∆Φ and 

multiply the single-spot intensity by 4× nsymop.   

(10) 
DSsymop

eff tn

π
ω

4

2=  

where: 

ωeff - effective angular velocity for the data set (radians/s) 

2π - 360° 

nsymop - number of symmetry operators in the space group 

tDS - total accumulated exposure time of a complete data set (seconds) 

 

That is, ωeff is the angular velocity of a 360° data set.  In practice a data-collection 

strategy (Dauter, 1999) is often devised to take advantage of reciprocal-space symmetry 

and collect a complete data set with ∆Φ < 360°, but such strategies are generally planned 

to finish at the end of the crystal’s useful life (discussed in Appendix C, supplemental) so 

tDS is the same.  The per-image exposure time is increased, and this decreases ω, but also 

decreases the number of observations, so ωeff formally does not change.   That is, a 

strategized data set will contain fewer but proportionally brighter spots, and the radiation 

damage-limited photon count is independent of collection strategy.   

This does not mean data collection strategy is useless!  A well designed strategy 

minimizes noise accumulation and resource consumption inherent to a given set of 

equipment, such as the read-out noise of a CCD chip or the time required to collect the 

data, but a discussion of these concerns is beyond the scope of this work.  Here we are 

interested in the absolute minimum crystal size, even given an ideal diffractometer, so we 
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assume that the only source of noise in a spot is the photon-counting noise (shot noise) of 

the Bragg-scattered photons themselves, and all other sources of noise, including the 

contribution of background scattering are assumed to be negligible.   

 

2.9 Absorption and dose  

 The attenuation factor A described in §2.5 is often incorrectly referred to as an 

“absorption factor”, but attenuation refers to every process for removing photons from a 

beam of light, including scattering.  Absorption is the process of transferring energy from 

the beam into the substance of the crystal, and the amount of energy “deposited” into a 

sample per unit mass is the dose (Gy or J/kg).  The mass of our spherical crystal is simply 

its density (ρ) multiplied by its volume Vxtal = 4/3πR3, and the available energy is the 

photon energy (Eph) multiplied by the number of photons that were not transmitted.  The 

latter is the number of incident photons (Ibeam × π R2) multiplied by the fraction: 

1-Tsphere(0,µ,R) (see Equation (5)).  In this way, the calculation of dose is related to that of 

the attenuation factor (A) because the process of dose deposition begins with a photon-

atom interaction, but not every interaction deposits the full photon energy as dose.  Some 

photons are merely scattered, depositing little or no energy, and in some cases absorbed 

energy is fluoresced away (Paithankar et al., 2009).  Seltzer (1993) accounted for such 

energy-loss mechanisms by assuming that only low-energy charged particles represent a 

“deposit” of dose and tabulated the result as the mass energy absorption coefficient µen.  

Operationally, calculating absorption instead of attenuation amounts to substituting µen 

for µxtal in Equation (5), which leads to: 
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where: 

Den - dose in Gy (J/kg) 

qe - electron charge (1.6022 x 10-19 J/eV) 

Eph - photon energy (eV/photon) 

Ibeam  - incident beam intensity (photons/s/m2) 

t - exposure time (s) 

ρ - density of sphere material (kg/m3 or g/L) 

R - radius of the sphere (m) 

µen - mass energy-absorption coefficient of sphere material (m-1) 

 

The subscript “en” denotes the use of the Seltzer (1993) coefficient.  Note that the 1/R 

term in Equation (11) is effectively cancelled by the Tsphere term for typical wavelengths 

and crystal sizes. Take for example a cube shaped crystal of the same width as our 

sphere, which will transmit Tcube = exp(-µ·2R), and since the limit of 1-exp(-x) as x → 0 is 

x, one can see that the (1-T) term approaches µ·2R when most of the beam is transmitted.  

This is generally the case for protein crystals, but we will keep Equation (11) in its exact 

form and continue to use the spherical crystal model for dose and attenuation to avoid 

complicating our analysis of the attenuation factor (A) against resolution with the corners 

of a rotating cube-shaped crystal . 

 If the beam profile is not flat (the constant Ibeam case assumed here and in §2.2) 

then some parts of the crystal will absorb more dose than others and these high-dose 

regions will “count” more in the diffraction pattern than the low-dose regions because 

they experience a brighter part of the beam (see Equation (1)).  Formally, we may deal 

with non-uniform beams as discussed in §2.2 by breaking up the crystal into tiny cubes 
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that do experience a constant Ibeam and then summing the resulting diffraction patterns 

(using Equation (4) to account for the attenuation of each incident and diffracted beam).  

However, we shall see in §2.11 and Appendix C (supplemental) that such a treatment is 

unnecessary because the damage-limited photon yield per spot is independent of Ibeam, 

obviating the need to integrate over the beam profile.  That is, given a long enough 

exposure time, every part of the crystal will eventually “burn out” and contribute 

whatever it will contribute to the diffraction pattern.  Therefore, for simplicity, we keep 

the “average dose” given by Equation (11) and assume the entire crystal is “evenly 

cooked” with no significant microscopic variation in the dose across the crystal.   

 

2.10 Photoelectron escape and the meaning of “dose”  

Cowan, Nave and Hill (Nave & Hill, 2005; Cowan & Nave, 2008) have pointed 

out that as the size of a protein crystal (R) is reduced, it eventually approaches the size of 

a primary photoelectron track (RPE), and the electrons themselves will start to escape.  

When this happens, the energy “deposited” within the crystal (dose) will be less than that 

predicted by Equation (11).  

In general, dose calculations are not simple, and although a sphere is the simplest 

possible shape, Equation (11) comes with certain caveats.  For example, if R becomes 

large compared to µen
-1 of the crystal material, then some fraction of the photons scattered 

from the core will be absorbed before escaping the sphere and some of the energy 

discounted to scattering by Seltzer must be added back to the dose.  A similar correction 

must also be made for energy assumed lost to fluorescence if R becomes large compared 
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to µen
-1 for the energy of the fluorescent photons (Paithankar et al., 2009).   Conversely, 

as R becomes comparable to RPE the dose given by using µen will be too high.   

 Fundamentally, the flow of energy between attenuation and radiation damage is a 

shower of particles which quickly divides the energy of the initial photon among a large 

number of atoms, distributed in space.  For example, a photoelectric absorption event 

results in an excited atom and a photoelectron (Einstein, 1905; Hubbell, 2006), and the 

excited atom then relaxes by emitting a fluorescent photon (Moseley, 1913), or more 

electrons via Auger (Meitner, 1922; Auger, 1925) or Coster-Kronig (1935) processes 

(ICRU, 1983). These particles travel some distance before colliding with another atom, 

and this cascade continues with the number of excited atoms increasing and the 

magnitude of transferred energy decreasing with each subsequent collision.  However, 

the distribution of events is not entirely random as the transfer requires an allowed 

electronic transition in the material.  Initially, at high energies, the number of allowed 

transitions is small (photoelectric absorption by deep shells, and scattering), but the list of 

possible transitions increases dramatically at lower energy.  Chemical transformations 

take place once the magnitude of energy transfer approaches that of the strongest 

chemical bonds in the sample (~ 1 eV or 100 kJ/mol), and there are a very large number 

of such states excited by a single X-ray photon.   

 Unfortunately, such a complete treatment of energy flow is not only beyond the 

scope of this work, but beyond the current understanding of radiation physics in complex 

substances.  For example, the available transitions or “oscillator strength” in pure water 

between 30 and 100 eV are still poorly understood (Garrett et al., 2004).  Dose 

calculations with particle-tracking simulation codes such as EGS (Nelson et al., 1985; 
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Kawrakow & Rogers, 2000; Edimo et al., 2008) or MCNP (Hendricks et al., 2000; 

Chiavassa et al., 2005; Chibani & Li, 2002) take into account carefully tabulated single- 

and double-differential cross sections of all known interactions between atoms, photons 

and electrons, but once a particle energy drops below 1 keV, it is considered “dose” 

because this is where most of the cross section tabulations end.  This means that even 

these highly sophisticated dose calculations will systematically underestimate track 

lengths by the range of 1 keV electrons.  Cole (1969) measured this to be ~0.06 µm in 

collodion plastic, so MCNP will overestimate the dose to crystals on the order of 60 nm 

and smaller.   

Perhaps the most important caveat is that photoelectron escape formally violates 

the fundamental dosimetric principle of charged particle equilibrium (CPE) (Attix, 1986; 

Moussa et al., 2006), making simulation results difficult to interpret.  The concern over 

violating CPE arises because more than half of the energy “deposited” by a photoelectron 

is not in the form of ionizations, but rather charge-neutral electronic excitations. 

Significantly more energy is deposited in this non-ionizing form at the beginning of an 

electron track than at the end (ICRU, 1983).  No doubt this energy destabilizes the 

molecules that receive it, but probably not in the same way as energy deposited by 

ionizing interactions.  Since it is not clear which kind of energy transfer is relevant to the 

fading of diffraction spots, the impact of “dose” may vary along the track. 

To date, all dose-calibrated radiation damage measurements have been conducted 

with samples larger than the relevant photoelectron tracks and calculated dose using 

coefficients like µen, so we shall continue to use µen for dose in this work, but in 

anticipation of future developments we shall introduce a Nave-Hill “capture fraction” fNH 
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to represent the fraction of the conventionally-calculated dose Den from Equation (11) 

that remains in the crystal and contributes to the “true” dose (Dreso) that is relevant to 

resolution-degrading chemical transformations.  For large crystals in ~1 Å X-ray beams, 

we assert that fNH = 1, and in our highly symmetric case of a uniform beam and a 

spherical crystal in a vacuum, this correction can only depend on the radius of the crystal 

R and the X-ray photon energy (Eph).  Although an exact expression cannot be derived at 

this time, a rough estimate of fNH is useful for detecting when a crystal has reached a size 

where the Nave-Hill effect may have a significant impact.  Since photoelectrons are 

preferentially emitted in a direction normal to the incident beam and deposit energy 

more-or-less evenly along their track, it is assumed here that the rough effect of 

photoelectron escape will be to enlarge the volume over which the dose is deposited in a 

single direction, and thereby reduce the dose to the crystal by a fraction: 
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where: 

Eph - photon energy (eV/photon) 

R - radius of the spherical crystal (m) 

RPE(E) - range of photoelectron of energy E derived by Cole (1969) (m) 

 

Note that, for simplicity, the K-shell energy of the atom that emits the photoelectron has 

not been deducted from the photon energy before applying it to Cole’s formula, nor have 

Compton electrons been considered, but these are likely not to be the largest source of 

error in Equation (12).  It must be stressed that this equation is a very rough estimate 

only, and could easily be off by a factor of two or more as R << RPE. However, it is 
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instructive to show that fNH is expected to reduce the dose roughly as the first power of R 

once R becomes less than RPE.  

 To demonstrate the potential variability of fNH calculations, we conducted MCNP 

(Hendricks et al., 2000) simulations of a sphere with radius R, the density and atomic 

composition of a protein crystal given in §2.5, and illuminated in a vacuum by X-rays of 

various energies.  The resulting minimum crystal sizes are plotted against those obtained 

using Equation (12) in Fig. 2.  Note that certain conclusions such as the optimum photon 

energy to use clearly depend on how fNH is calculated.  The MCNP calculation is 

probably more reliable than the simplistic model in Equation (12), but the caveats 

mentioned above have yet to be addressed.  

 

2.11 Radiation damage  

 The radiochemical mechanism behind the fading of diffraction spots is not 

presently clear (Garman & Nave, 2009), but the connection to dose has been calibrated 

experimentally.  Specifically, it was pointed out by Holton (2009) and Howells et al. 

(2009) that the general trend reported by Howells et al. (2009), namely: D1/2 ≈ 10·d MGy 

where d is the feature size in Å is remarkably consistent with the subsequent observations 

of both Owen et al. (2006) and Kmetko et al. (2006) (see Fig. 3) if the average spot 

intensity at a given resolution fades exponentially: 
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〈I〉 - average spot intensity (photons/spot) after absorbing a dose Dreso 

〈I〉ND  - average spot intensity (photons/spot) expected in the absence of radiation 

damage 

ln(2) - natural log of two (~0.7) 

Dreso - deposited dose that is relevant to spot fading (MGy/s) 

H - Howells et al. (2009) criterion (10 MGy/Å) 

d  - d-spacing in Å 

 

 Note that here we use Dreso because it was defined in the last section as the 

resolution-degrading dose, but for currently available spot-fading data this is the same as 

Den from Equation (11) (fNH = 1).  We use angle brackets 〈〉 to emphasize that Equation 

(13) describes the decay of average spot intensity at a given d-spacing, as opposed to the 

decay of any particular spot.  Realistically, individual spots may follow different paths of 

decay that are not necessarily exponential (Blake & Phillips, 1962; Banumathi et al., 

2004), but in this work we are only interested in the average spot intensity in a given 

resolution bin, and the argument for Equation (13) is based largely upon spot-fading 

measurements.   

The meta-analysis of Howells et al. (2009) did not include the observations made 

by Owen et al. (2006) nor Kmetko et al. (2006), but we reproduce in Fig. 3 the 

observations presented in those works, superimposed on predictions made by our 

radiation damage model (H model) and the dose-dependent B factor model (B model) 

suggested by Kmetko et al. (2006).  We selected the PDB entries 2clu and 1lz8 as 

representative of apoferritin and lysozyme (respectively) because 2clu claims a similar 

resolution limit to that observed in Owen et al. (2006) and 1lz8 is the entry for lysozyme 

reported by Kmetko et al. (2006).  It should be noted that the same value of H (10 
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MGy/Å) was used for all “H model” curves in Fig. 3 and this was not “fitted” to the 

plotted data points in any way, so the agreement between all observations and the “H 

model” predictions (solid lines) is quite remarkable.  In fact, the “H model” predictions in 

Fig. 3B were intentionally offset to pass through the origin so that the “H model” lines 

would not obscure the least-squares fitted lines of the “B model”.  In this work, we use 

the “H model” because it is in best agreement with both these studies as well as 20 other 

radiation damage experiments surveyed by Howells et al. (2009). 

However, spot-fading experiments measure the same spots over and over again 

and we are interested in the total accumulated intensity 〈I〉DL at the “damage limit” (TDL), 

so we must integrate Equation (13) over time.  This integral is performed in Appendix C 

supplemental, where we show that integrating over an exponential decay is equivalent to 

accumulating a non-decaying intensity for less time, and applying the proportionality 

constant gives: 
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where: 

〈I〉DL - average damage-limited intensity (photons/spot) at a given resolution 

〈I〉ND - average spot intensity (photons/spot) expected in the absence of radiation 

damage 

tDS - exposure time for the data set (seconds) 

0.1 - converting λ from Å to m, ρ from g/cm3 to kg/m3 and MGy to Gy 

fdecayed - fractional progress toward completely faded spots at end of data set 

H - Howells’s criterion (10 MGy/Å) 

d - resolution of interest (Å) 

λ - X-ray wavelength (Å) 

R - radius of the spherical crystal (m) 
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ρ - density of crystal (~1.2 g/cm3) 

fNH - the Nave-Hill dose capture fraction 

h - Planck’s constant (6.626 x 10-34 J·s) 

c - speed of light (299792458 m/s) 

Ibeam  - incident beam intensity (photons/s/m2) 

µen - mass energy-absorption coefficient of sphere material (m-1) 

 

Note that the “damage limit” was defined in Appendix C, supplemental as the point when 

spot intensity has decayed by some fraction (fdecayed) of the initial “undamaged” value.  

For example Owen et al. (2006) recommended ending the data collection when the 

average spot intensity fades to ~ 0.7 of the undamaged value (fdecayed = 0.3), but the level 

of concern over radiation damage for a particular project may inspire some investigators 

to exceed this limit, or set a more conservative one (Holton, 2009).   

The value of 〈I〉ND is simply the average value of spot intensity as given by 

Equation (1), and computing this average was accomplished by replacing the terms in 

Equation (1) that vary from spot to spot with their average values and also substituting 

ωeff from Equation (10) to convert spot intensities into merged hkl intensities: 
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We may now substitute 〈I〉ND /tDS from Equation (15) into Equation (14) and then 

replace 〈LP〉fobs, 〈F
2〉, Vcell and Vxtal with their expanded forms from Equations (6), (9), 

(7), and 4/3πR3, respectively, to yield the fully-qualified expression for damage-limited 

spot intensity: 
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where: 

〈I〉DL - average damage-limited intensity (photons/hkl) at a given resolution 

105 - converting R from µm to m, re from m to Å, ρ from g/cm3 to kg/m3 and MGy to 

Gy 

re - classical electron radius (2.818 x 10-15 m/electron) 

h - Planck’s constant (6.626 x 10-34 J·s) 

c - speed of light (299792458 m/s) 

fdecayed - fractional progress toward completely faded spots at end of data set 

ρ - density of crystal (~1.2 g/cm3) 

R - radius of the spherical crystal (µm) 

λ - X-ray wavelength (Å) 

fNH - the Nave & Hill (2005) dose capture fraction (1 for large crystals) 

nASU - number of proteins in the asymmetric unit 

Mr - molecular weight of the protein (Daltons or g/mol) 

VM - Matthews’s coefficient (~2.4 Å3/Dalton) 

H - Howells’s criterion (10 MGy/Å) 

θ - Bragg angle 

〈ƒa
2〉 - number-averaged squared structure factor per protein atom (electron2) 

〈Ma〉 - number-averaged atomic weight of a protein atom (~7.1 Daltons) 

B - average (Wilson) temperature factor (Å2) 

µ - attenuation coefficient of sphere material (m-1) 

µen - mass energy-absorption coefficient of sphere material (m-1) 

 

Note that the incident beam intensity (Ibeam) is missing from this equation because spot 

intensity was integrated out to the “damage limit” where the average spot has decayed by 

a given fraction (fdecayed).  Note also that the crystal symmetry is missing, as the nsymop 
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term from Equation (10) was cancelled by another nsymop term in the expression for the 

average structure factor (Equation (7)), implying that the damage limit is more closely 

related to the number of molecules in the crystal than it is to the number of unit cells.  

One R in the R4 term is effectively cancelled by the (1-T) term for all but the very largest 

protein crystals and one λ term is roughly cancelled (within ~30% between 7 and 17 keV) 

by the 〈LP〉fobs factor.   

Although Equation (16) may appear somewhat intimidating, it is both instructive 

and useful to examine it in this expanded form, as this eases the incorporation of different 

macromolecule types, radiation damage models and crystal shapes.  For example, 〈ƒa
2〉, 

〈Ma〉, µ and µen may be replaced with appropriate values for nucleic acids.  The ln(2) term 

arises from the definition of H as the dose required to reduce spot intensities at a given d-

spacing (d = 0.5λ/sinθ) by half, so Hd and ln(2) are grouped together.  Crystals that are 

more sensitive than normal to radiation damage per unit of dose, such as reported for 

dodecin by Murray et al. (2005), may be represented by using a smaller value of H, and a 

more sophisticated resolution-dependent damage model might replace Hd/ln(2) with an 

arbitrary function H(d).  Also, considering the crystal to be a cube with edge 2R instead 

of a sphere of radius R simply changes the leading 2π/9 term to unity and replaces Tsphere 

with exp(-µen2R). The increased scattering power of the cube arises because (2R)3 is 

roughly twice 4/3πR3 and the damage-limited intensity (photons/hkl) scales linearly with 

crystal volume. 
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3. Results and Discussion 

We are now prepared to calculate the diameter of the smallest protein crystal that 

can be expected to produce a complete data set on an ideal diffractometer: a very large 

perfect detector, perfect shutter and spindle with a uniform and flicker-free X-ray beam 

bathing a spherical protein crystal in a vacuum.  The noise from such a machine is 

dominated by photon counting, so if we require a signal-to-noise ratio (SNR) of 2.0 in the 

outer resolution bin of say 2 Å, then the average hkl in this bin must accumulate at least 

four photons (I/σ = I/√I).  If there are other sources of noise, such as background 

scattering, then more than four photons will be required, but since it is theoretically 

possible to reduce background to a negligible level (see §3.2), we will begin with this 

limiting case. 

3.1 Zero-background case  

 We begin by neglecting the Nave-Hill effect because it has yet to be measured 

and represents the greatest unknown in the dose calculation.  With fNH = 1 Equation (16) 

predicts that a 1.2 µm diameter sphere of perfect lysozyme crystal (B = 0; Mr = 14300 

Da; VM = 2.0 Å3/Da) in a beam of 1 Å X-rays will scatter an average of four photons per 

hkl (〈I〉DL) at 2 Å resolution before the radiation damage limit is reached (fdecayed = 0.3).  

This limit is independent of exposure time or beam flux since the total accumulated 

fluence (photons/area) is dictated by the damage limit.   

If we now involve fNH from Equation (12) or from MCNP simulations, then the 4-

photon lysozyme crystal size shrinks to 0.5 µm or 0.34 µm, respectively.  In addition to 

this, if we allow the spots to fade away completely (fdecayed = 1) then 0.81 µm (fNH = 1), 
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0.28 µm (Equation (12)) or 0.19 µm (MCNP) crystals will yield 4 photons/hkl at 2 Å.  

There are a number of reasons why complete decay is not a realistic damage limit, not the 

least of which is the biological relevance of the results (Owen et al., 2006), but it is 

instructive to consider an infinite exposure time here because photon counting is the only 

kind of noise that is theoretically impossible to eliminate.   

 Immediately, the next questions to ask are how this limit is influenced by the 

choice of photon energy, desired resolution, the degree of disorder in the crystal, the 

molecular weight of the protein, or combinations thereof.  Equation (16) is the exact 

formula for relating all these quantities together, but as the questions to be asked occupy 

a large multidimensional parameter space, it is instructive to graph the influence of each 

parameter separately.  Since many of the variables in Equation (16) change with the 

X-ray wavelength, we begin by plotting the minimum crystal size against photon energy 

in Fig. 2.  This graph is similar to the “IE“ quantity obtained by Arndt (1984), except that 

here the y axis is on an absolute scale.  The energy dependence is remarkably flat, and 

this result is consistent with experimental observation (Gonzalez et al., 1994).  The 

“spike” in crystal size at very low photon energy is due to a sharp upswing in 〈LP〉 when 

the relp grazes the back of the Ewald sphere just before fobs drops to zero, and the 2 Å 

curves stop at 3.1 keV because it is not possible to collect 2 Å data with wavelengths 

longer than 4 Å.  The minimum-size curve for 4 photons/hkl at 3.5 Å from a perfect 

crystal of a 100 kDa protein is provided to fill this low energy gap as well as demonstrate 

how simultaneously decreasing the scattering power and lowering the desired data quality 

can “coincidentally” result in the same crystal size requirement. 
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 Graphs of minimum crystal size against molecular weight (Fig. 4), nASU, fdecayed, H 

and absorption coefficients are all very similar because each of these terms scales linearly 

with crystal volume.  An examination of Equation (16) reveals that these variables are not 

strongly coupled to any others if R << µ-1, as absorption is proportional to R and 

attenuation negligible in this case.  The solvent content VM dependence is also not 

graphed because this is just a plot of a square root function passing through 1.2 µm for 

VM = 2.0 Å3/Da, λ = 1 Å, d = 2 Å and B = 0. 

 The graph of minimum crystal size against desired resolution may curve upward 

or downward depending on the value chosen for the Wilson B factor (dashed lines in Fig. 

5) and indeed it is not surprising that the degree of disorder in a protein crystal has a 

strong influence on the diffraction limit.  What is surprising is that if the B factor is 

always selected to follow the empirically-derived formula (B = 4d2+12) presented by 

Holton (2009), one obtains the straight solid lines in Fig. 5.  This remarkable result 

appears to be due to an effect similar to that described by Guinier et al. (1955), except in 

this case it is the “radius of gyration” of the individual atoms that determines the slope of 

the lines in Fig. 5.  That is, if the number of photons required to detect the weakest spots 

is relatively fixed from crystal to crystal, then the Wilson B factor that “linearizes” 

Equation (16) against resolution is given by B = 4d2+12.  Regardless of the origins, Fig. 5 

immediately suggests an empirical formula for the required crystal size given an observed 

resolution limit. 

(17) 






=
d

.
MI.R rDL

744
exp01102 3  

where: 

2R - required diameter of the crystal (µm) 

0.011 - a scale factor assuming VM = 2.4 Å3/Da 
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〈I〉DL - desired damage-limited intensity (photons/hkl) at a given resolution 

Mr - molecular weight of the protein (Daltons or g/mol) 

4.74 - 4π2ra
2 where ra is the radius of gyration of a protein atom (Å) 

d - resolution of interest (Å) 

 

This is not to say that a crystal of diameter 2R will diffract to resolution d, but rather that 

a crystal of a protein with mass Mr found to diffract to resolution d probably has a Wilson 

B factor that will require the crystal to be of diameter 2R to yield a complete data set.  

Until now, we have assumed that an outer resolution bin (〈I〉DL) need only gather 4 

photons/hkl, but it appears that the “detection limit” of current technology is much higher 

than this (described in the next section), and a value of 〈I〉DL = 100 to 200 photons/hkl is 

suggested for practical use of Equation (17), depending on the background level.  

 

3.2 Background scattering 

 X-ray background consists of scattering from air, aperture walls, fluorescence, 

disorder in the crystal, and potentially many other sources. A full theoretical treatment of 

background and all the other possible sources of noise in a diffraction experiment are 

well beyond the scope of this work, but we shall briefly describe here how the large gap 

between our calculated absolute minimum crystal size and those that have been 

determined experimentally is completely explained by background scattering alone. 

A summary of experimental minimum crystal size determinations was provided 

by Holton (2009), who related scattering power to data quality with an empirical 

“difficulty parameter” (n0) that increases with the quality of data needed for “success” 
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and decreases as instrument capabilities improve.  The ”record” for obtaining a complete 

data set was n0 = 3.1, but entering the parameters obtained in the last section into 

Equation (3) of Holton (2009): nxtals = 1 (number of crystals used), d = 2.0 Å (resolution 

limit), B = 0, VM = 2.0 Å3/Da and ℓxyz = 1.2 µm (crystal “size”) we obtain n0 = 0.2.  This 

is a factor of 15 improvement over the “record”, and using ℓxyz = 0.34 µm, as expected 

from the more optimistic photoelectron escape model, we arrive at n0 = 0.0044, which is 

700 fold less scattering power than has ever been used to collect a complete data set.   

There are many possible reasons why extant beamlines may not have reached the 

theoretical limit, but what is clear is that more than four photons are presently required to 

detect the faintest spots.  Indeed, the n0 = 3.1 case corresponds to 64 photons/hkl (if the 

cubic crystal volume in (Holton, 2009) is taken to be Vxtal here).  Formally, this must be 

due to additional noise inflating σ(I) beyond simply √I, requiring increased I 

(photons/hkl) to bring I/σ(I) back up to 2.0.  An obvious source of additional noise is 

background scattering, so we now generalize our formula for the average signal-to-noise 

ratio (SNR) in the outer resolution bin from simply √〈I〉DL to: 

(18) 
2

other
images

DL
BGpixDL

DL

σ
n

T
InmI

I
SNR

++
=  

where: 

〈I〉DL - average damage-limited intensity (photons/hkl) 

m - mean multiplicity (spots/hkl, counting partials as distinct spots) 

npix - number of pixels involved in the average spot 

IBG - average background scattering rate (photons/pixel/s) at the resolution of interest 

TDL - damage-limited exposure time of the data set (seconds) 

nimages - number of diffraction images in the data set 
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σother - root-mean-square of all other sources of noise (placed on a 1-photon scale) 

 

For a given camera and sample the observed background photons/pixel on a single 

diffraction image will be proportional to the per-image exposure time (timage = 

TDL/nimages), indicating how IBG is fixed for a given experiment.  Since we are considering 

a damage-limited experiment, the total number of background photons that fall on the 

detector (IBGTDL) is also fixed, regardless of how these photons are divided into images.  

The practice of “fine slicing” (Pflugrath, 1999) reduces IBGtimage, at the expense of 

increasing m, but in the limit of “infinite” fine slicing the quantity mIBGtimage approaches a 

constant because the background that actually falls into the 3D integration region of a 

given spot cannot be avoided by finer slicing.  Very fine slicing will start to make other 

sources of noise important, such as detector read-out noise, so this and all other sources 

of noise are lumped into σother for completeness.  Nevertheless, with our hypothetical 

ideal diffractometer σother will be negligible. 

 Choosing some reasonable parameters: m = 4, npix = 5×5, Equation (18) is solved 

for SNR = 2.0 and 〈I〉DL = 64 photons/hkl by IBGtimage = 10 photons/pixel.  It must be 

stressed that this is a very rough approximation, particularly since n0 was not claimed to 

be accurate to better than a factor of two and such an error propagated through Equation 

(18) becomes a factor of four in background level.  Nevertheless, this IBGtimage is exactly 

that observed near the faintest spots shown in Fig. 4 of (Moukhametzianov et al., 2008), 

the source of our n0 = 3.1 “record”, (that detector registers 1.0 pixel levels per photon and 

has a “zero” offset of 20 pixel levels).   
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The experience of the authors of this work is that 10 photons/pixel is on the low 

side of the range of background levels seen on typical diffraction images.  It is more 

common to see hundreds of photons/pixel from crystals that only diffract to modest 

resolutions because the same disorder that leads to faint spots also produces diffuse 

scattering (James, 1962; Welberry, 2004).  If we keep npix = 5x5 and m = 4 as above, and 

IBGtimage = 25, 100 or even 400 photons/pixel, then satisfying SNR = 2 in Equation (18) 

requires 〈I〉DL to be 102, 202 or 402 photons/hkl, respectively. 

Note that reducing the multiplicity (m) by collecting the bare minimum number of 

images will result in no net “gain” so long as the damage limit is reached at the end of 

data collection because the increased exposure time per image will increase IBGtimage to 

exactly compensate any reduced multiplicity (m).  On the other hand, considerable gains 

can be had by making absolute background counts/pixel/s (IBG) lower, reducing the 

number of pixels occupied by spots on the detector (npix), or both.   

 Background scattering can never be completely eliminated, but the noise it adds 

to the spots can be minimized by making the spot size very small.  A detailed discussion 

of spot size is beyond the scope of this work, but theoretically, very small spots can be 

achieved with a perfect protein crystal (no mosaic spread), a near-zero emittance beam of 

very short wavelength X-rays focused on an enormous and noiseless detector with no 

point-spread function, very small pixels and very fine rotation steps.  Therefore IBG can 

be reduced to near zero, or at least to the point where the noise from background is 

insignificant (〈I〉DL >> m npix IBG timage in Equation (18)), implying that Equation (16) with 

〈I〉DL set to 4 photons/hkl represents an absolute and fundamental limit.  That is, unless 

some way is found to change one of the parameters in Equation (16), such as increasing 
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H by mitigating the chemistry of global damage or decreasing fNH with photoelectron 

escape, a lysozyme crystal smaller than 1.2 µm will never yield a complete data set to 

2 Å.   

 

3.3 Implications for micro-focus beams 

The 1.2 µm size limit for perfect lysozyme crystals determined here does not 

imply that crystals and X-ray beams smaller than ~1 µm are useless.  If a complete data 

set cannot be had from one crystal then a multi-crystal strategy such as that used by 

Kendrew (1960; Dickerson et al., 1961), a “needle scanning” strategy (Moukhametzianov 

et al., 2008) or perhaps the “serial crystallography” approach proposed by Starodub et al. 

(2008) may be employed, but the total scattering volume will have to add up to the 

volume of a sphere given by R in Equation (16) using fNH for the individual crystal size.  

For example, the volume needed for one crystal of a 100-crystal data set with final 

merged 〈I〉DL = 4 photon/hkl is given by using 〈I〉DL = 0.04 photon/hkl in Equation (16).    

Crystals with larger unit cells or more disorder (or both) will have to be bigger 

than their “perfect lysozyme equivalent” volume.  For example, a lysozyme crystal with a 

more realistic Wilson B factor of 20 must be 2.8 µm wide to produce 4 photons/hkl in the 

2 Å bin using the fdecayed = 0.3 damage limit, and a 10 MDa asymmetric unit with VM = 

2.4 Å3/Da and B = 61 must form a crystal 15 µm wide to produce 4 photons/hkl at 3.5 Å.   

But, as the present “detection limit” appears to be on the order of 100 photons/hkl 

(IBGtimage ~100 photons/pixel), these realistic lysozyme crystals will have to be 8.3 µm in 

diameter for 2 Å data, and 3.5 Å data from the 10 MDa case will require 43 µm crystals, 

limiting the usefulness of X-ray beams smaller than this. 
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4. Conclusions 

The minimum useful protein crystal size is limited by the background photons 

that accumulate in the detector pixels occupied by a spot, and current technologies seem 

to require on the order of 100 photons/hkl (after merging) to attain a signal-to-noise ratio 

of 2.  The choice of X-ray wavelength appears to have only a minor impact on the 

damage-limited scattering power of a crystal, which remains proportional to crystal 

volume and inversely proportional to both the molecular weight of the asymmetric unit 

and the square of Matthews’s (1968) coefficient for all practical purposes.  The resolution 

dependence is complicated by the Wilson B factor, but relating B to d-spacing 

empirically revealed that damage-limited scattering power is proportional to exp(-14.2/d) 

where d is the d-spacing of interest.  Dose reduction due to photoelectron escape appears 

theoretically promising but difficult to predict, and the current detection limit for spots 

will have to be overcome for this effect to be of practical use for typical single-crystal 

data sets at accessible photon energies. 

 

Appendix A: Data completeness 

The fraction of relps in a given constant-resolution sphere that are lost in the blind 

region lie in two polar caps intersecting the rotation axis (z).  That is, as the resolution 

sphere spins, the border between relps on its surface that will intersect the Ewald sphere 

twice per revolution and relps that will never intersect it is a circle of relps that “graze” 
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the Ewald sphere at just one point.  It is illustrative to consider moving the relp circle in 

Fig. 1 up and down the z axis.  At this grazing point, Bragg’s Law: 

(A1) θd λ sin2=  

is satisfied, and so the height (h) of this circle above the z = 0 plane must be the radius of 

the Ewald sphere λ* times the sin of the take-off angle of the spot (2θ): 

(A2) h = λ*sin 2θ 

Now, the area in either of the blind regions is a section of the surface of a sphere that is 

cut off by a plane at z = ±h.  This shape is known as a spherical cap, and the area of a 

spherical cap from a sphere of radius r that was cut at height h is given by: 

(A3) Acap = 2π r (r-h) 

Now, there are two such caps, and we are interested in the area left over after they are cut 

off (observable relps) relative to the original area of the sphere: 

(A4) 
( )( ) ( )

r

h

r

hrr

πr
r-hπrπr

obs =−−=−=
2

2

4

224
f  

Since a sphere of relps with constant d-spacing “d” is has radius 1/d = d*, we may 

substitute r = d* and Equation (A2) into Equation (A4): 

(A5) θθ
λ
d

d*

θλ*
obs cossin2

2sin
f ==  

Substituting in Equation (A1) for λ: 

(A6) θθθ
θd

d
obs coscossin2

sin2
f ==  
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Appendix B: Average Lorentz-polarization factor 

 

Taking the product of Equations (2a) and (3) from the text and, for the moment, 

simplifying Equation (3) by considering the case of an unpolarized beam (F = 0), we 

have: 

(B1) 
22

2

2sin2

2cos1

ζθ

θ
LP

−
+=  

Assuming the X-ray beam is perpendicular to the rotation axis the polar coordinate ζ is 

simply the height of the relp circle pictured in Fig. 1 above the z = 0 plane if the length of 

the relp vector is normalized to unit wavelength.  That is, if we define the angle κ 

between the relp vector and the z = 0 plane, we have: 

(B2) κθ  
d

κλ 
κ *λζ sinsin2

sin
sin === d  

  The angle κ is 0° when the relp circle lies exactly in the z = 0 plane, and it is 90° when 

the relp lies perfectly along the z-axis and the relp circle has vanished.  Note that 

Equation (B1) is undefined at this position, and so care must be taken when approaching 

this singularity.  The value of ζ for which the relp circle just grazes the Ewald sphere at 

one point is when the denominator of (B1) becomes zero, or: 

(B3) κθ  ζθ sinsin22sin ==   or  θκ cossin =  

Since we wish to avoid the singularity here, we shall set our limit of integration at a small 

value short of it and use the symbol η because it is reminiscent of mosaic spread. 

(B4) ( ) ηθκ −= cosarcsinmax  

Substituting B2 into B1 we obtain: 
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(B5) 
κ θθ

θ

κθ θ

θ
LP

22

2

222

2

sincossin4

2cos1

sinsin42sin2

2cos1

−
+=

−
+=  

  Computing the average value of LP for all spots at a fixed resolution is 

equivalent to integrating LP over the accessible surface of the constant-resolution sphere, 

and then dividing by the accessible surface area: 

(B6) 

∫

∫
= blind

equator

blind

equator

 dA

 dALP

LP  

The denominator of (B6) was solved as Equation (A6), and is simply half of the 

accessible surface area of the constant-resolution sphere, which has radius λ/d or 2sinθ 

and accessible fraction fobs = cosθ: 

(B7)  ( ) θ θ π dA
blind

equator

cossin22 2=∫  

Now, all the points that lie on or very near the relp circle pictured in Fig. 1 will have the 

same L and P factors, so we must “weight” the LP of each contact point on the Ewald 

sphere surface by the circumference of the relp circle.  That is, we define the area element 

in Equation (B6) with a re-casting of Equation (A3) where we can compute the area of 

the constant-resolution sphere above the relp circle in Fig. 1 by substituting the radius of 

this sphere (λ/d = 2sinθ) for “r” and ζ from Equation (B2) for “h”:  

(B8) ( )( ) κθθκθθθπAcap sinsin8sin8sinsin2sin2sin22 22 π−π=−=   

Differentiating with respect to κ, we obtain the area element: 

(B9) dκκθdA  cos sin8- 2π=  

Substituting (B5), (B7) and (B9) into (B6) we have: 
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(B10a) 

( )
( ) θθπ

 dκκθ π -
κ θθ

θ
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κ

cossin22

cossin8
sincossin4
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2
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22
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(B10b) ∫ −
+−=
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We now employ the indefinite integral: 

(B11) 














−κ
κ−κ−=κ

κ−
κ

∫ C

C

C
2

22

2 sin
sinsin

arctand
sin 

 cos 
 

And substitute this into the definite integral:  
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(B13) 
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Clearly, as we approach the limit: 

(B14) 
2sincos

cos
lim

max

0
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π
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Substituting this back into Equation (B10b) we obtain the average LP factor: 

(6a) 






 −=+=
2
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Multiplying 〈LP〉 by fobs = cosθ, we obtain: 

(6b) 
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θ
θπ

θ
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This result was validated numerically by calculating discrete spot positions, L and P for 

hypothetical data sets using randomized wavelengths, unit cells and crystal orientations 

and then dividing the predictions into resolution bins and averaging the value of the 

product LP and the fraction of all possible relps that appeared in the bin (not shown).  

These simulations were repeated using the full expression for the polarization factor with 

different values for the degree of polarization (F), but the numerical results were identical 

to F = 0 (not shown), and we saw no need to repeat the derivation using the full 

polarization factor expression. 

 

Appendix C: Spot-fading integral 

 

Here we assume that the average spot intensity (photons/spot) at a given resolution fades 

exponentially, but begin with a slightly different representation of Equation (13) from the 

text: 

(C1) ( ) ( ) ( ) 









−= t

dH

DR
 iti 2lnexp0  

where: 

〈i〉(t) - average intensity rate (photons/spot/s) at time t (after absorbing a dose DR·t) 

〈i〉(0)  - average intensity rate (photons/spot/s) from an undamaged crystal 

ln(2) - natural log of two (~0.7) 

DR - dose deposited per unit time (Dreso/t) or dose rate (MGy/s) 

H - Howells et al. (2009) criterion (10 MGy/Å) 

d  - d-spacing (Å) 

t - accumulated exposure time (seconds) 
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Note the use of angle brackets 〈〉 to denote the average in a given resolution bin, 

and that here we use the term “intensity rate” to refer to a spot intensity (photons/spot) 

divided by the exposure time used to record it (seconds).  This is because accurate spot 

fading experiments must record the decay curve by sampling the same spots over and 

over again using per-observation exposure times that are short relative to the damage 

limit (TDL).  That is, the sampling time must be short enough so that the spot does not 

decay appreciably during a given sample and the photons/spot per unit time (intensity 

rate) is constant.  So, effectively, spot fading experiments measure changes in intensity 

rate.  Here we use a lower case “i” to differentiate an intensity rate (photons/spot/s) from 

an integrated spot intensity (photons/spot), which we will continue to denote with a 

capital “I”, and also replace the dose Dreso with DR×t so that DR represents the time-

invariant factors of dose in Equation (11). Since DR, d, H, and 〈i〉(0) do not change with 

time, the integral of Equation (C1) is simply the integral of an exponential decay: 

 

 (C2)  ( ) ( ) ( ) 























== ∫ DL
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DL
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dH
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--
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i dttiI
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0
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Where: 

〈I〉DL - accumulated spot intensity at the damage limit (photons/spot) 

TDL - accumulated exposure time at the damage limit (seconds) 

DR - dose rate (MGy/s) 

H - Howells et al. (2009) criterion (10 MGy/Å) 

d  - d-spacing in Å 
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Since we are not considering the accumulation of background counts, TDL could be 

chosen to be infinity and 〈I〉DL would then truly account for every last photon that will fall 

into a spot before it fades away completely, but in practice the damage limit is usually 

declared at a point where 〈i〉(TDL) is not zero, as discussed in §2.11.  To account for 

potentially variable damage limit criteria, we define the “decay fraction” at the end of 

data collection as: 

(C3) 
( ) ( )

( )0

0
f

i

Tii DL
decayed

−
=  

Since TDL is now defined in terms of fdecayed, substituting Equation (C3) into Equation 

(C2) simplifies it to the expression: 

 

(C4)  ( )
 DR

dH
iI decayedDL )2ln(

f0=  

where: 

〈I〉DL - average accumulated spot intensity (photons/spot) at the damage limit 

〈i〉(0)  - average intensity rate (photons/spot/s) from an undamaged crystal 

DR - dose rate (MGy/s) 

H - Howells et al. (2009) criterion (10 MGy/Å) 

d  - d-spacing in Å 

 

Although it may appear that 〈I〉DL (photons/spot) depends on the dose rate (DR), the time 

component of DR (MGy/s) is actually cancelled by the time component of the initial 

intensity rate 〈i〉(0) (photons/spot/s).  Consider a hypothetical data collection strategy 

where a very large number of observations are made of each spot, and the whole data set 

is actually a series of “mini” data sets with exposure time tDS.  As long as tDS is very small 

when compared to the damage limit (TDL), the spot intensities (photons/spot) in the first 
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“mini” data set (IND) will be “undamaged” and given by Darwin’s formula (Equation (1)).  

The exact IND measured will be proportional to tDS, as can easily be seen by substituting 

ωeff from Equation (10) into Equation (1): 

(C5) 
2

3
2

2

4
FALP

V

λ
π

n

V

V
rI

t

I
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symop
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xtal
ebeam

DS

ND ⋅⋅⋅=  

where: 

IND - spot intensity (photons/spot) from the first “mini” data set measured quickly 

enough to have suffered no radiation damage effects. 

It is readily apparent that the quotient IND/tDS (photons/spot/s) is an intensity rate, as is the 

average value 〈I〉ND/tDS.  Formally, the right hand side of Equation (C5) is independent of 

time, but as the reality of radiation damage progresses the same tDS will record spot 

intensities that fade (on average) according to the exponential decay of Equation (C1).  

Therefore, the starting value of this decay curve is 〈I〉ND/tDS, and we may substitute this 

intensity rate for 〈i〉(0) in the above Equations: 

(C6) ( )
DS

ND

t

I
i =0  

  Now the sum of all the equivalent observations in all the mini data sets up to a given 

accumulated exposure time is given by Equation (C2), and even if a single data set were 

collected with total exposure time TDL the average number of photons that eventually 

contribute to a spot (〈I〉DL) is simply the integral of the decay over time (Equation (C4)). 

 We now substitute 〈I〉ND/tDS for 〈i〉(0) in Equation (C4), as well as Den/t from 

Equation (11) for the dose rate (DR), convert the photon energy into wavelength (qeEph = 

hc/λ = J/photon), apply the Nave-Hill fraction fNH from Equation (12) and scale to 

convenient units.  We arrive at Equation (14) from the main text: 
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(14) ( ) ( )( ),R,µT h c I  

R ρ H d λ .

t

I
I

enspherebeamNH

decayed

DS

ND
DL 01f2ln3

 4f10

−
=  

Where: 

〈I〉DL  - maximum average spot intensity due to radiation damage limits (photons/spot) 

〈I〉ND - average spot intensity (photons/spot) observed using an undamaged crystal and a 

very short exposure: tDS 

H - Howells’s criterion (10 MGy/Å) 

0.1 - converting λ from Å to m, ρ from g/cm3 to kg/m3 and MGy to Gy 

λ - X-ray wavelength (Å) 

h - Planck’s constant (6.626 x 10-34 J·s) 

c - speed of light (299792458 m/s) 

R - radius of the spherical crystal (m) 

ρ - density of crystal (~1.2 g/cm3) 

Ibeam  - incident beam intensity (photons/s/m2) 

µen - mass energy-absorption coefficient of sphere material (m-1) 

fNH - the Nave-Hill fraction 
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Figure Legends: 
 

Figure 1: Coordinate system 

The x axis is occupied by the X-ray beam and the spindle rotates the crystal (at the origin) 

about the z axis.  The y axis is not shown as it is very nearly perpendicular to the page.  

The reciprocal lattice point (relp) of interest is described here by the circle it traces out as 

the crystal is rotated.  Note that it intersects the Ewald sphere twice, and that the 

“penetration speed” is the component of the relp’s velocity that is perpendicular to the 

Ewald sphere surface.  The ratio of the “penetration speed” to the actual “speed” is the 

Lorentz factor.  The diffracted ray passes through the point of intersection, but evolves 

from the center of the Ewald sphere (not the origin!), which is an unfortunate conceptual 

flaw in Ewald’s construction.  Nevertheless, the take-off angle (2θ) obtained is the same 

as that observed in real space.  The angles α and κ used in Equations (3) and Appendix C 

(supplemental) are shown. 

 

Figure 2: Wavelength dependence of the minimum required crystal size. 

All plotted calculations used VM = 2.4 Å3/Da, Wilson B = 0 and 4 photons/hkl in the 

indicated resolution bin.  The crystal size required for 2 Å data from lysozyme and 3.5 Å 

data from a 100 kDa protein are essentially identical as these cases balance scattering 

power with data quality requirements.  Solid lines were calculated neglecting 

photoelectron escape (fNH = 1), and dotted lines represent two different models for 

photoelectron loss: that given by Equation (12) (orange) and a full particle-tracking dose 
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calculation with the program MCNP (blue).  The sharp reversal of the curves at low 

energy is due to the onset of backscattering, where the Lorentz factor spikes. 

 

Figure 3: Radiation damage model 

The observations made by Owen et al. (2006) and Kmetko et al. (2006) are 

reproduced with permission from the original publishers and plotted against predicted 

curves derived from two alternative radiation damage models.  The “H model” is an 

exponential decay of spot intensity with dose, and the “B model” is the dose-dependent B 

factor model suggested by Kmetko et al. (2006).  The “H model” predictions were made 

by applying Equation 13 to intensities derived from the observed structure factor file 

deposited with the indicated PDB entry and then computing the sum of all intensities 

(panel A) followed by scaling the “simulated damage” intensities to the “zero-dose” 

intensities (panel B) using the procedure described by Kmetko et al. (2006).  The “B 

model” prediction curves (dotted lines) were prepared similarly, except that the 

“simulated damage” intensities were generated by applying the relevant dose-dependent 

B factor reported by Kmetko et al. (2006). 

All “H model” curves (solid lines) used the same value of H (10 MGy/Å) and 

therefore may explain the dissimilar “sensitivity parameter” observed by Kmetko et al. 

(2006) for apoferritin and lysozyme (orange circles vs blue squares, respectively).  It is 

clear from panel A that the “B model” is at odds with the observations of Owen et al. 

(2006) (green diamonds) although the same predicted intensities are in very good 

agreement with the data points from Kmetko et al. (2006) (orange circles).  Agreement 

between these two studies is restored however if we accept the “H model” where the 
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resolution dependence of radiation damage is exponential as opposed to a Gaussian (B 

model).   

 

 

Figure 4: Molecular weight dependence of the minimum required crystal size 

 All plotted calculations used VM = 2.4 Å3/Da, 1 Å radiation, 2 Å spots and B = 24.  

Without photoelectron escape, the required crystal volume is simply proportional to 

molecular weight, and the two different models of photoelectron escape considered here 

are shown to have significant, yet different effects for crystals smaller than a few µm 

wide, as this is the linear dimension of a photoelectron track (RPE).  

 

 

Figure 5: Resolution dependence of the minimum required crystal size 

 All plotted calculations used VM = 2.4, and 1 Å radiation.  The Wilson B factor 

strongly affects the curvature of the required crystal size for a given number of photons, 

but applying the empirical formula shown serendipitously simplifies this analysis, as 

described in the text.  

 

 



 

 57 

Figure 1: 
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Figure 3: 
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Figure 4: 
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Figure 5: 

resolution and B dependence
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