multitemperature data and **diffuse scattering** to reveal protein allostery

ALS Structural Biology Review

831 User Talk - James Fraser - UCSF

From assemblies to molecular mechanism...

We are transitioning from static structural biology....

...to dynamic structural biology

How are **allosteric** perturbations communicated intramolecularly to alter protein function?

Proteins often populate **multiple conformations** in crystals

Conformational heterogeneity can be **static** or **dynamic**

Conformational heterogeneity can be **static** or **dynamic**

Diffuse scattering can **distinguish** different models of coupled heterogeneity

Small features - between unit cells | Large features - within unit cells

monochromatic Cu K_{a} radiation from an Elliott rotating anode. The data (corrected for camera background and polarization) are displayed out to radius R = 0.45 Å⁻¹. Bragg reflections are overexposed. The sharp ares are due to diffraction from the Al foil window of the He beam tunnel. The colour table (optical density range 0-2 OD units) was constructed to distinguish small variations in intensity up to 0.5 OD units. b, Bragg reflections and haloes digitally separated by subtracting the smoothly-varying diffuse scattering component from the film data. The inset wedge shows the estimated circularly symmetrical Compton-plus water scattering. c, Variational scattering evaluated from the difference between a and the two components in b. The colour table scale in b and c is 1.5× that in a. Each intensity step in c equals 0.02 OD units in the data.

Caspar et al, Nature, 1988

Welberry et al, Acta B, 2011

New data sets are needed to advance diffuse scattering

Wall, Ealick, and Gruner, PNAS 1997

Andrew Mic VanBenschoten Wall (

Michael Wall (LANL)

TLS models are poor at explaining diffuse intensities, but **normal modes** or liquid like motions are better

Temperature can **shift** the relative populations of confirmations in the crystal

Temperature can **shift** the relative populations of confirmations in the crystal

Temperature can **shift** the relative populations of confirmations in the crystal

Hypotheses: (1) shifting temperature exposes conformations near the "ground" state; (2) these new conformations are used by the protein in physiological mechanisms

Conformational dynamics are at the core of three critical problems in biology

We want to:

design macromolecules with new (unnatural) functions

understand how mutations alter protein function in **disease**

discover small molecules **drugs** to modulate protein function

Conformational dynamics are at the core of three critical problems in biology

We want to:

design macromolecules with new (unnatural) functions

understand how mutations alter protein function in **disease**

discover small molecules **drugs** to modulate protein function

Hypotheses: (1) shifting temperature exposes conformations near the "ground" state; (2) these new conformations are used by the protein in physiological mechanisms

Cryocooling has been amazing for static structural biology - but **limits opportunities** for dynamic structural biology!

Low-occupancy features present at **room temperature** are dynamically accessed conformations and can provide new mechanistic insights

An allosteric inhibitor for PTP1B can be more **specific** and **bioavailable**

The active-site **WPD loop** in PTP1B opens & closes during catalysis

The active-site **WPD loop** in PTP1B opens & closes during catalysis

Temperature should modulate the WPD loop's **open-closed** equilibrium

Residues that warm up **in sync** with the WPD loop may be **energetically coupled**

An allosteric drug could topple the dominos to remotely lock the WPD loop

A known allosteric small-molecule inhibitor is good **proof of principle** (but inhibits weakly)

Apo X-ray datasets across a wide **temperature range**

Temperature	Source	Resolution
100 K	PDB: 1sug	1.95 Å
180 K	new data	1.84 Å
240 K	new data	1.87 Å
278 K	new data	1.78 Å

Daniel Keedy

The WPD loop **opens** as temperature increases

As the WPD loop **opens**, the C-terminal a7 helix **undocks**

It stabilizes **pre-sampled** minor conformations!

Benzbromarone does not simply **induce** conformational change...

The α7 helix also undocks when **benzbromarone** binds

The α7 helix also undocks when **benzbromarone** binds

PDB ID 1t49

We have also discovered a new allosteric site by multitemperature mapping

- **specific**: residues not conserved in homologs
- "bindable": binds cryoprotectants in existing structures AND is identified as a hotspot in tethering screen
- **functional**: mutations along the path to the new site impair catalysis

Conformational dynamics are at the core of three critical problems in biology

We want to:

design macromolecules with new (unnatural) functions

understand how mutations alter protein function in **disease**

discover small molecules **drugs** to modulate protein function

Hypotheses: (1) shifting temperature exposes conformations near the "ground" state;(2) these new conformations are used by the protein in physiological mechanisms

Different perturbations can tap into the intramolecular nervous system of proteins... including global, physical perturbations, like **temperature**

... and diffuse scattering will extend our ability to model the response to perturbations

Why my lab really loves 831

