USER MANUAL

DMC-40x0

Manual Rev. 1.0b

By Galil Motion Control, Inc.

Galil Motion Control, Inc.
270 Technology Way
Rocklin, California 95765
Phone: (916) 626-0101
Fax: (916) 626-0102

E-mail Address: support@galilmc.com
URL: www.galilmc.com

Rev 5/08

Using This Manual

This user manual provides information for proper operation of the DMC-40x0 controller. A separate supplemental
manual, the Command Reference, contains a description of the commands available for use with this controller.

Y our DMC-40x0 motion controller has been designed to work with both servo and stepper type motors. Installation
and system setup will vary depending upon whether the controller will be used with stepper motors or servo motors.
To make finding the appropriate instructions faster and easier, icons will be next to any information that applies
exclusively to one type of system. Otherwise, assume that the instructions apply to all types of systems. The icon
legend is shown below.

@ Attention: Pertains to servo motor use.
@ Attention: Pertains to stepper motor use.

Attention: Pertains to controllers with more than 4 axes.
4080

Please note that many examples are written for the DMC-4040 four-axes controller or the DMC-4080 eight axes
controller. Users of the DMC-4030 3-axis controller, DMC-4020 2-axes controller or DMC-4010 1-axis controller
should note that the DMC-4030 uses the axes denoted as XYZ, the DMC-4020 uses the axes denoted as XY, and the
DMC-4010 uses the X-axis only.

Examples for the DMC-4080 denote the axes as A,B,C,D,E,F,G,H. Users of the DMC-4050 5-axes controller.
DMC-4060 6-axes controller or DMC-4070, 7-axes controller should note that the DMC-4050 denotes the axes as
A,B,C,D,E, the DMC-4060 denotes the axes as A,B,C,D,E,F and the DMC-4070 denotes the axes as
A,B,C,D,E,F,G. The axes A,B,C,D may be used interchangeably with A,B,C,D.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the user to design
effective error handling and safety protection as part of the machinery. Galil shall not be liable or
responsible for any incidental or consequential damages.

Contents

Contents i
Chapter 1 Overview 1
TNELOQUCTION ...ttt ettt et e s e e st e et e ae st esseesaeeteenteeneennnans 1
OVEIVIEW OF MOTOT TYPES....eeietiitiiieeiie ittt ettt sttt ettt st e st e eeee e 2
Standard Servo Motor with +/- 10 Volt Command Signalccecceerieiiiinennnnne 2
Brushless Servo Motor with Sinusoidal Commutation............c.ccceverenerenencnieeenen. 2

Stepper Motor with Step and Direction Signalsccccevveviiiciieienienieieeecieseene 2
Overview of External AMPLTIETS.......c.covvevuiiviieiiiiiieieeieetese ettt enna s 3
Amplifiers in Current Modec.ecvevuierieriieiieriere ettt 3
Amplifiers in VeloCity MOde.......c.oecveriiiiiriieiieie ettt 3

Stepper Motor AMPIITIELS.......ccverierieiieie ettt eee 3
Overview of Galil Amplifiers and DITVErSccocviiiriiiieieeeee e 3
AT — AMP-43040 (-D30X0) .eeuveeeiesieeeieiieiieiteieie ettt ettt eeeae e ss e sessesse e eneenes 3

A2 — AMP-43140 (-D3140) .eoueeeeieeieeiieeeeeeeiee ettt ene e enes 3

A3 — SDM-44040 (-DA040)oomenieiee ettt 3

A4 — SDM-44T140 (-DAT40) ..ottt eae e 3
DMC-40x0 Functional EISMENLSccueiuiiiriiiiieieeeie ettt 4
MICTOCOMPULET SECHIOM ...eevvievrieeiieereetiestieteeveetesteesteesteeseessesseesseenseesseessenssenseesseesens 4

MOLOT TNEETTACE ..ottt et 4
COMMUIICALION ...ttt ettt ettt ettt et b e bt e it et e et e sbeebesbeest et e s e seneenes 4

GENETAL I/0 ..t 5

N 15 10 21 131013 £ TR 5

IMIOTOT ...ttt et ettt e st st a et et ettt 5
AMPLTIET (DIIVET) .entiiiieiieiieeee ettt ettt ettt e e teeseeeneesseeees 5
BICOMET ...ttt ettt et st a et ettt e eneenaeen 7

Watch DO TIMETeoiieiieie ettt ettt ettt e e 7
Chapter 2 Getting Started 8
DIMC-4040 LAYOUL. ...ttt ettt ettt ettt et et e st e s bt eetese et et e sbeseeabesaeeseeneensenseseeareene 8
DMC-4080 LAYOUL....c..eueeuieiieiitesteeteeit ettt sttt ettt ettt be et e et st besbeeb e et et e naesteebeeee 9
DMC-40X0 POWET CONNECTIONScueeutenietiietesieeieeieeitetete ettt et eieent et et e see st sbesaeeneeneas 10
DMC-4040 DIMENSIONSc..eeueeuietertententeeteeieettertenteste st ebeeieettete e stestesbeseeebeeseensensessesbesaeeneeneas 11
DMC-4080 DIMENSIONSc..eeueeureiiniiniertietieieeitetentente st sttt ettetetestestesbesaesbeeseessensestesbesaesueeseas 12
Elements YOu NEEdcccuiiiiiiiiieriiieteteee ettt sttt ettt 13
Installing the DMC-40X0cccuerieriieiieie et eieee ettt ettt e e esessaessaesseeseensesnnesneenseenes 14
Step 1. Determine Overall Motor Configurationccoveervereeienienieseeieeieeeeens 14

Step 2. Install Jumpers on the DMC-40X0.........cccoeririiiiiiiiiiee e 15

Step 3. Install the Communications Software.............ccoeceveiiierierieieeeeeeeeeee 15

Step 4. Connect 18-80VDC Power to the Controller.............cceevvevvieiieiieeieieieennen, 16

DMC-40x0

Contents e i

Step 5. Establish Communications with Galil Software..............cccceeeivvvieriieiiiecinnnnnns 16

Step 6. Determine the Axes to be Used for Sinusoidal Commutation....................... 17

Step 7. Make Connections to Amplifier and Encoder.cccccoevininincncninncenne. 18

Step 8a. Connect Standard Servo MOtOTScueiveriierieriieie et 20

Step 8b. Connect Sinusoidal Commutation MOtOTS........c.cecververeerirerieeieeieneeieenens 21

Step 8c. CoNNECt StEP MOTOTSoveeeieiieiieieeiie ettt ettt eseeseeeeeas 24

Step 9. Tune the SErvo SYSTEMccveiuieiieiieie et 24

Design EXAMPIESeeueiiiiieiieiieteee ettt ettt et s ee e 25
Example 1 - SyStem Set-Upceouieiiiiiiieiieieee et 25
Example 2 - Profiled MOVEcoooieiieiiiiiieeece ettt 26
EXample 3 - MUILIPIE AXES...ccviiiiieiiieiieeieerieeiee et eieesveeeteesveeseteeseaeesaaeessneenenas 26
Example 4 - Independent MOVES..........ccvevuirieeieneeniieieeie e sieesreese e seeseeesaeese e 26
Example 5 - Position INterrogation..........cccuevveeevirieiieneeneeie e eeesieeieereeevesaesaeenas 26
Example 6 - AbSOIULE POSILIONc.eevvieiieiieiieieeiieieeteee et 27
Example 7 - Velocity CONtIOL........ccoecuieeierieiieiieie ettt 27
Example 8 - Operation Under Torque Limitcccecvevierieriieiiesieneeie e 27
Example 9 - INterrogation..........c.eeiieriieieiieiiereeie ettt 28
Example 10 - Operation in the Buffer Modecccoeiiiiiiiiniiieic e 28
Example 11 - Using the On-Board Editorcccoeiiiiiiiiiiiieiecee e 28
Example 12 - Motion Programs with LOOPS.......cccoceiiiieiiinieieeesese e 29
Example 13 - Motion Programs with TTippOIntscceceeeeeierienierieneneseecseeeenene 29
Example 14 - Control Variablescccveevuiiriieiieeniiecieesie et 29
Example 15 - Linear Interpolation............cccevveriiecieiieiieneeie et eve e e 30
Example 16 - Circular Interpolation............ccccecveeuieieieeneenieeieeeeeeesieere e ene e 30
Chapter 3 Connecting Hardware 32
OVEIVIEW ...ttt ettt ettt ettt st b e bttt et ettt s bbbt e st ea s et et e s bt sbeebeebeebtentebenbestenbesaeas 32
Using OptoiSolated INPULSccueeierieriieiieiieie ettt sttt eesaesseesseeseensesnnens 32
Limit SWItCh INPUL.......ooiiiiiieit ettt 32

Home SWiItch TNPUL.......ooiiiiiie e e 33

ADOTE TPUL ...ttt et st b e bt et ene 33

ELO (Electronic Lock-Out) INPutcccooiiiiiiieiieeeeeeceeeee e 34

RESEE INPUL. ...ttt et ettt e et e et e et eeteeesbaeenaeesnsaeenseesanes 34
Uncommitted Digital INPULSooueeuieiiieieicsesc e 34

Wiring the Optoisolated INPULS.........cceevieriiiiiiieeiereee ettt 34
Electrical SPecifiCationscvecieriieeieiiiesiesieeieeteseesteesteere e e eeae e eseesseesaeseeeseas 34
Bi-Directional Capabilityccceevierieriieiiieieeiesieeieete et sre e ere e saeesaeeae e 34

Using an [solated POWer SUPPLY.......cccveierienieiieieeeieeeeee e 36
Bypassing the Opto-ISOlation:ccceeruieiiieiiieienierieeee e 37

T INPULS ettt et ettt e sa bbbt e st e bt e e s bt e e bt e e sbbeeateesbteenabeenbeeesaeennee 37
The Auxiliary Encoder INPULSc.oooieiiiiiiiiiieeeeee e 37

High Power Opto-Isolated OULPULS.coiiiriiiiieiieiere et ettt ee e 38
Electrical SPecificationsccoeerieiiieiinieiiest ettt 38

Wiring the Opto-Isolated OULPULSceveieieririie e 38

ANALOZ INPULS ..ttt et ettt b ettt ettt e e 39
AQ SEIIIIES .ttt ettt ettt et ettt st b e bt ettt st saeesae e e 39

TTL OULPULS .eeeetieeiiee ettt et eite ettt e et e et e et e ettt e bt e ebeeebbeensteesbaeenseeesseensseesbeensseennseensaeenses 39
OULPUL COMPATE ..eneveeirieeiiieeiieeieesieeeieeeteeettesbeeeteeebeeeseessbeeeseessbaeenseesnseeenseesnses 39

EITOT OULPUL ..ttt et ettt et et e ebaeeteeenbaeenseesnees 39
Extended I/O of the DMC-40X0 CONtrollerc..coeruirererieiiiiienienienicsienieeiceitetetesee e 40
Electrical Specifications (3.3V — Standard)..........ccoccevvverieriecieieeieeeeee e 40
Electrical Specifications (5V — OPtion).........cccecuereerieerieesienienienieenieeee e see e 40
AMPLTIET INEEITACE ..ottt sttt et eneesneens 41
Electrical SPecifiCationsccierieiiieierieiieie et e 41
OVEIVIEW ..ttt ettt ettt ettt et ettt a e s bt e s b e be et e e st e s et e eae e bt et e enteestesbaesbeenaas 41

ii Contents DMC-40x0

ICM-42000 and ICM-42100 Amplifier Enable Circuit..........ccceevecverveneerreenenenenne. 41

ICM-42200 Amplifier Enable Circuitccceoverierereniininieieieieiesesese e 44
Chapter 4 Software Tools and Communication 48
INEEOAUCTION ..ttt ettt ettt ettt b 48
RIS232 POTES ..ttt ettt ettt et b bbbt bttt ettt be s 48
RS232 - Main Port {P1} DATATERM.......ccceiiiiiiiteieeeeeeee e 49

RS232 - Auxiliary Port {P2} DATASETccoooiiiiieieeee ettt 49

RS-232 ConfigUIationccueeouieiieieeiieieeie ettt ettt et 49
Ethernet Configurationcocoiieiiiiiiiiie ettt sttt 50
Communication ProtoCOLScc.eiuiriiiiiiieiieeie e 50
AQATESSING ...ttt ettt ettt ettt e et e ae bt bt e st et et e e e naeaneeaea 50
Communicating with Multiple DeVICES.......ccvvvviriieiieiierieeii et 51
IMUIEICASTING ... eevvieeveeireeiieeitestee st eie et et e et e ste e te e b e esbeesseesaesseeseesseessesssesseessnesseensensns 53

Using Third Party SOtWAre...........cccoeeveioierienieiieeeeeee et 53

Data RECOTA ...ttt st sttt ettt st 53
Explanation Data Record Bit Fieldsccooiviiiiiiiiieiieeceeeeeeeeee e 58

Notes Regarding Velocity and Torque Informationoceveeveeiineiieneeneene 58

QZ COMMANA......ccccviiiiieeiieiiieeciee et e etee e e eteeeteeeteeebaeeseeesbaeaseeessaeaseeensseenseesnses 59
Controller Response to COMMANGScceeruieiiiiiiiiiiniieieie ettt 59
Unsolicited Messages Generated by Controller............coocevieiieiiiiiiiiinineeeeeeee e 59
Galil SMATTTERM . ..cuiiiiiiiiieee ettt ettt sae et e et esbesaesaesaeeaeas 60
Windows Servo Design Kit (WSDK)coouiiiiiiiiiiiei ettt 63
Creating Custom Software INterfacesocvvvierierieriiciiceeeeeee e 64
ACHVEX TOOLKIL .. ettt s 65
DMCWin Programmers TOOIKit........c.cccueiiirieriiiiiiieiieseeie ettt 65

Galil Communications APT with C/CH+cciiiiiiiieieececeee e 65

Galil Communications API with Visual Basicccccccovvvevieiiiecienieieeeieeieceene, 66

DOS, Linux, and QNX t0O0IS......cc.cciviiiiiiiiieeciiiecee ettt eve e e e eveesveesreesveesareesaeeaneenraeenneas 67
Chapter 5 Command Basics 68
INELOQUCTION ...ttt ettt ettt et et e s st e s bt e beete e e sneesaeenaeenes 68
Command SYNtax - ASCIL.......ccoiiiiiiiee ettt ettt eseeeae e enee e 68
Coordinated Motion with more than 1 axisccoceevieeeieieniieie e 69
Command Syntax — Binary (advanced)c.cooeeieieiienineie e 70
Binary Command FOrmat...........cccccuevieriiiiieiiiieeeieceeeee sttt 70

Binary command table............coooviriiiiienieiieieceseee e 71
Controller Response t0 DATAcovi ittt ettt ebe s saeesseeseense e 72
Interrogating the CONtrOLLErcccueiiiiieieie e ene e 72
Interrogation COMMANASccuveciieieeieriieieeie ettt ettt nbeeeaeesaesseennes 72
Summary of Interrogation Commandscceccvereerieerierieerieniere e eee e 73
Interrogating Current Commanded Values.ccoooevviiiiiieiieiieeeeeeee e 73
(05155624 ¢ USSR 73
ComMMANd SUMIMATYoveeiiieieeieeie ettt ettt et essee st e st ebeeteeneesseesneesaeeneeenes 73
Chapter 6 Programming Motion 74
OVETVIEW ittt ettt et ettt ea e bt e b et et e et e e a e e s bt e bt et em e ea e ebeeabeenb e e bt enteemeesaeesbeenseenee 74
Independent AXiS POSIHIONINGc.ceuiiiiieitirieiie ettt st 76
Command Summary - Independent AXISccceecverierieerierieeniieieeienieere e eaesne s 76
Operand Summary - Independent AXISccecvvereerieerreecieneeseeneesie e eeeseesseesseenns 76
INdependent JOZ@INGcccuveiirieiieiecie ettt ettt et e e stbesseesbe e seenseenaessnesseeseenns 78
Command SUMMAry = JOZZINGc.cccverirriieiieieiiesiereesie e eeeeee st e eteeeaesaesseenees 78
Operand Summary - Independent AXISccoevereerieerieesieniesieseeie e see e eee s 79

POSItION TTACKINGeouieiieiieiecie ettt ettt te s e s e e saeesseeseenneensenseenes 79

DMC-40x0 Contents eiiii

EXampPle MOtION 4ooouiiiieiieiieieeeeeeeeeie ettt e et sbaesse b e esaeesaesneennas 82

TP POINES ...ttt ettt ettt et e enaesnnesneesneenseenneenns 83
Command Summary — Position Tracking Modeccccevvevieiinienieieeeeene, 84

Linear Interpolation MOdEc.eiieiiiiriieiieieeieeiee ettt eenee s 84
Specifying Linear SEZMENTSc.cocuieiirieriieieeie ettt 84
Command Summary - Linear Interpolation..............cccocevienienieniniereeeeeee e 86
Operand Summary - Linear Interpolation............cccceeeeiiereeienieiienceeec e 86
Example - LINear MOVE.......cccviiiieeiiieiieeiie ettt ettt ste et ssaeesnaeeseaeeeees 87
Example - MUItiple MOVESccviiiiiieiiciceeieeteeeie ettt e 88

Vector Mode: Linear and Circular Interpolation MOtion............cceevereerieeeieieeieeneeereeve e 89
Specifying the Coordinate Planecccecvevieiieniieiicieiieceeseee e 89
Specifying Vector SEZMENLSc.cccuerieriieriieieiieriesreesteeeeereseeesseeseesseesaessaesseessens 89
Additional COMMANAS.........coeeieriiiiiniininereeecet ettt 90
Command Summary - Coordinated Motion SEqUence...........cocevvereereeeceerveneennennn. 92
Operand Summary - Coordinated Motion SEqUENCE........c.cccvevverereciervereerieeeeeeeenees 92
ElECtIONIC GEATINE ...cuveeueieeieeeietiete ettt ettt ettt et e st e et e et e es e ssee bt eseenteemeesneeeaeeneeenes 93
RAMPEA GRATING ..ottt ettt ettt et e s s e a e sbe e te e e e e eneenaeenes 94
Example — Electronic Gearing Over a Specified Interval............coccoeiiniiiennnnne 95
Command Summary - Electronic Gearingccecuererenerereneeieiesieesesese e 96
Example - Simple Master SIAVEcovveviiiiiiiiieiecie et 96
Example - EIeCtronic GEATINEcceeeeuieuirieieiesiesie sttt eteeceie e see e eie e eneene 96
Example - Gantry MOccuoevieieiieiieiieieeeeseee ettt ae s 96
ELECLIONIC CaIM ...ttt ettt bbbttt et et e b 97
Command Summary - Electronic CAMcccccceeieriieieiieiieneenieeee e eeesveeve e 100
Operand Summary - Electronic CAMcccoeciecieiienienieie et 100
Example - E1ectronic CAMcoocveciieieeieiieiieie sttt enae e sneens 101

CONLOUT MOAE ...ttt ettt ettt st b ettt e te e b e 102
Specifying Contour SEZMENLScccecuerierierieeie ettt ee e e 102
Additional CommAandS...........cceeruierieeiieeieeie et 103
Command Summary - Contour Modecceeieeiieiirieiie e 103

StepPer MOtOT OPETAtIONveeeiieiiieriiieeieesteeste ettt esveestreeseaeestaeessseesseeessseenseeesseeseesseenses 107
Specifying Stepper Motor OPeration............ceceerueereerienieneenieeieniesieenieee e 107

Using an Encoder with Stepper MOtOrS..........ccvvviiriieriieniieiieieeieseeseee e eee e 108
Command Summary - Stepper Motor Operation.............eceecveeeereerreesreeveseeseennens 108
Operand Summary - Stepper Motor Operation............ccceevueeeereereenreerreecveseeseennens 109

Stepper Position Maintenance Mode (SPM)........ccocievuieiiieiieieeieieeieeie e 109
Internal Controller Commands (USEr Can qUETY):ceevververeereeereeeeeeeeseeeneeeeeeneens 109

User Configurable Commands (user can query & change):ccceeevevevveneeeeenen. 109

L2y (o) o 554 A SR URRURRSI 110

(07075 (<Iv15 T o WU 110

Dual Loop (Auxiliary ENCOAET)coouiiiiiiiieieiieiiee ettt 112
Backlash COmMPENSALIONc.cceervieiiieiieieiieeteere et sreereesveeenesreens 113

MOtION SIOOTHINEZ ...coneiiiiiiiiieiee ettt ettt et e 114
Using the IT Command:cocoeieiiiiiiiieeeceeeeee et 115

Using the KS Command (Step Motor Smoothing):..........cccceeevevevivienieniieieceeene, 116

HOIMUNE ...ttt e e et e st e s e e sae e beesbeesbeesseessesssensaesseenseenseenseensas 116
STAGE L1ttt ettt sttt sttt st e et e st e e tb e e s abe e tbeenabeeares 117

STAGE 21 ..ttt ettt sttt ettt st e et s bt e bt e s abe e ateesabeenaee s 117

SEAEE 31ttt ettt sttt e sttt e st e bt e e st e e ab e e sabeeate s 117
Command Summary - Homing Operation.............cceceeevereereereeneeeseeeeeeeeneeeseeeeens 119
Operand Summary - Homing Operation............cceceeeuereereeneenieeeeeeesieenieeie e 119

High Speed Position Capture (The Latch Function)............ccocveeiieniiiiniiieneeeeeeee, 119
Fast Update Rate MOAEccvevuiiiiieiiiiicicceceteee ettt s ve e et ebeenne s 121
Chapter 7 Application Programming 122

iv e Contents

DMC-40x0

OVEIVIEW ..ottt e et e e e e e et e e et e e eeaaeeesenaeeesenaetessaaeeesnnseeesennseeseseeessnareseanns 122

Using the DMC-40x0 Editor to Enter Programs............cccoecvvveiiiieiienieneeiecieeeeeeesieeie e 122
Edit Mode Commands...........cccecueueriririneninieeeteieneeesee sttt 122
Pro@ram FOTrmat........coouiiiiiiiiee et sttt st 123
Using Labels in Programsccocceeveeiiiiieiienieneee e 123
SPecial Labels.ccueeiuiiiiiieiee et 124
Commenting PrOZIaAMScevieriieiieieeiesii ettt e e eneeeneeeneens 124
Executing Programs - MultitaSKingceoeviiiieiiiniei e 125
DebUZEZING PrOZIAIMScoeiiiiiitiieietieieee ettt ettt sttt st ebe e st et et et eeesbesbeeaeeneeneans 126
Program FIow Commandscoeirieiriiieieese ettt 127
Event Triggers & TTiPPOINLS.....cc.eeruieiieiiriientieniieieete ettt 127
Event Trigger EXamPIes:ccooveriiiiiieiieieeiesieeie ettt esse s 129
Conditional JUMPScccveeiiiiiiiiciiee ettt sreeseesbeesseeseens 131
Using If, Else, and Endif Commandscccocveienienieniieieeeeeeeee e 133
SUDTOULINES ...ttt sbe e 134
Stack ManipUIAtion..........ccuerierieriieiieie ettt sa et e e enseeesesenenns 134
AUto-Start ROULINEoo.eeiiieiieiiee e 135
Automatic Subroutines for Monitoring Conditions...........ccceceevereeriereeneeneneene 135
Mathematical and Functional EXPIeSSionscccecveierieriienieniienie et 139
Mathematical OPEIALOLSccceevvievieiieeeciierteere et ete e e steeteereeree s e e sseeseesbeessesseens 139
Bit-WiSE OPETALOTS .. eeeuvieieiieeieeiiiiesieertieesteesteesteessaeesereeseeessreeseeaseesseessseessseesns 139
FUNCHIONS ..ttt sttt et s nae e 140
VATTADIES ...ttt bbbt b e b et ettt e b e 141
Programmable Variablescccooieiieiieiieiieiieiecie et 141
OPCTANAS ...ttt ettt ettt et e et e et e ste e beesbeesbeaseeestesseeseesseesseessesssesssesseesseenseasseessenssensenssens 142
Special Operands (KeyWords)ccoeverieririeiieiie et 143
AATTAYS ..ttt ettt ettt et ettt et e bt e bt e b et e bt e e bt e bt e e bt e e bt e e bt e e be e e bee e eabeenateas 143
D INING ATTAYS ...veeuvieieiieeiestett et ettt et e e stesaesseesseeseenseeseesseesseenseensesnsessaens 143
Assignment of A1ray ENtriesccoooieiieiiiriii e 144
Automatic Data Capture iNt0 ATTAYSc.eeoeerueerieriieieeieeieenteeieee e st seee e eeeeaees 145
De-allocating ATTaY SPACE ...c.eervieeeeieeeieniieteeteeitesttesteenteeeeseesseesaeeseeeneeeneesseeneeans 146
Input of Data (Numeric and StriNg)ccoeeriiriiiiiienieeet e 146
INPUL OF DALA....cceeieeiie ettt st e s beeesbe e s beeesaeesebaesnsee e 146
Operator Data Entry MOdeccooieviieiieiicieiicieeie et 147
Using Communication INterTUPt..........ccvevvieviieierieiieieeieseeseeie e see e sreesaeene e 148
Output of Data (Numeric and String)c.cccevieviieciieieeierieie e eeesee e esre e eee e e sreeseessens 149
SENAING MESSAZESvvvevvreniieeierieiieieeteeteseesteessestesstesseeseenseessesseesseensesnsesssesseenses 149
Displaying Variables and ATTaYS.........ccceevueriereerierieiiesieneeeee e eeeseeeneeesesneesnnens 151
Interrogation CoOmMMANAScccveruiereieiieienieeeie ettt e e e eneeeneeas 151
Formatting Variables and Array Elementscccoeoeiierieniiiieeeeeeeeeeeee 152
Converting to USEr UNIS.........ceiuieiiiiiieieriieieeie ettt esee e naeens 153
HArdWare I/Oooouieeeee ettt ettt ettt ettt ne e st nae s 154
DigItal OULPULS ..ttt et et 154
Digital INPULS ...ttt st 155
The Auxiliary Encoder INPULScc.ooiiiiiiiiieieeee e e 155
Input Interrupt FUNCHONoccviiviiiiciieiccieece et 155
ANALOZ INPULS ..ottt et ettt et eesbessaesaeesteesseeseesseeseesseenseens 156
Extended 1/O of the DMC-40X0 CONtrollerccevuieuiiieieiiienienesierie e 157
Configuring the I/O of the DMC-40X0........cccceiieeierieiienieie et 157
Saving the State of the Outputs in Non-Volatile Memory.........c.ccocverencrcreneenee. 158
Accessing EXtended I/Oooiveiiiieiieiee et 158
2500 o) (N 0] o) T 1o 1510 4 LTSRS 159
WIEE CULEET ..ottt ettt et et et e et e bt et et eeneesneeeeeneeeneeas 159
X-Y Table CONLIOILETeoueiiieiiieieeeee ettt 160
Speed Control by JOYSHICKooviiiiriiiieieee e 162
Position Control by JOYSICK........eouiriiiiiiieieiee e 163

DMC-40x0

Contents e v

Backlash Compensation by Sampled Dual-Loopcceevevievienieiieiieieeieieeeene 163

Chapter 8 Hardware & Software Protection 166
INEEOAUCTION ..ottt sttt sttt 166
Hardware ProteCtionccuievieiieieriieieeeie ettt ettt e steenteenaesneesseesseenseennes 166

Output Protection Lines..........ccocveruieriieciieieniieieeie sttt eae e sneens 166
Input Protection LINeSccooievieiiieiieiieiee ettt 167
N L0 02 (el g (011111013 EO SRR 167
Programmable Position LImitsccceeierieriiriieieiieceeseee e 168
OFf=ON-EITOT .ttt et nb e 168
Automatic Error ROULINEccooiiiiiiiiiiiiiecee e 168
Limit SWitch ROULINEoiiiiiiiiic e e 169

Chapter 9 Troubleshooting 170
OVEIVIEW ...ttt sttt ettt ettt b e s bt bt et e s et et s b bt e bt e he e bt e st em b et e st e ebesbeebeeatente e et e sbeseeebeae 170
INSLALLATION <.ttt ettt ettt 170
SEADIIIEY .ttt bttt ettt b sttt et s 171
OPCIALION ...ttt sttt eh ettt a b s bbbt bt bt et et e st e st e s bt sbeebeebeeat e e et e teneenbenae 171

Chapter 10 Theory of Operation 172
OVETVIEW ..ttt ettt ettt et e et et et e e st e e s ee s st e bt e bt e et e aeeemeeeaeesa e e et e st enteenteeneesseeaneenneenseennes 172
Operation of Closed-Loop SYSIEMSeiiirieiieieeieee ettt 174
SYSEEM MOAECIINGc.eeieeietieee ettt ettt sttt st ebe et et e b et e ebeeeeeeeenas 175

IMOtOT-AMPITICToviiiieiicii ettt b e te e aeeveenseas 176
ENICOMRT ...ttt sttt ettt st nbeen 178
DIAC ettt e 178
DAL FIIEOT ...viiieiieieeie ettt ettt ae et e e e e seaesaenseenseas 179
ZIOH ..ottt b e et 180
SYSIEM ANALYSIS.....eivieiietieieeteeieste st este et et e et e st eeeesbeesteesaesseesseesseenseensesseesseenseenseensenneanes 180
System Design and COMPENSAtION.........ervierireierieriieriietieteeteseeesteesseessessesaesseesseesseesessenns 182
The Analytical Method...........coooieiiiiieieeieeeee e 182
Appendices 186
Electrical SPecifiCationseecuieierieiieieee ettt ettt s nae s 186
N1 4O J Oe) 112 o) KSR 186
SEEPPET CONIIOL......oiiiiiiiiieii ettt ettt ettt et b e e ere e re et e e b e esseseneseeenas 186
INPUL / OULPUL .ottt ettt st re b e eabeeaseers e reesbeenseas 186
POWET REQUITEIMENTS.c.viiiiieiiciieieeiiete et et eteeae e e saeeaeesseeseesseesseessesssensnens 187
Performance SPECIfiCAtIONSccieviiieiiiieiierieeie ettt ebe et eesbeeaeeaesseesseesseenseesseas 188
Minimum Servo Loop Update TIme:ccceveviieriieieiienierie e eeesieesve e seve e 188
Fast Update Rate MOAEccveiuiiiieiieie ettt sttt s e e enne s 189
Power Connectors for the DMC-40X0cccoeriiiiriienieriieiteie et see e sseese e 190
OVEIVIEW ..ttt sttt ettt ettt ettt et sttt b e sbe et et et et et e sbesbe b eaeeae 190
Molex Part NUmbers USEdcooeeiiieiirieiieieeieee et 190
Connectors for ICM-42000 Interconnect Boardccccoeiiiieiiiiiiiiiieieceeeeeeeeee 191
ICM-42000 I/O (A-D) 44 pin D-Sub Connector (Female).........ccceeeerieinieneennen. 191
ICM-42000 DMC-40x0 I/O (E-H) 44 pin D-Sub Connector (Female)................... 191
ICM-42000 External Driver (A-D) 44 pin D-Sub Connector (Male)...................... 192
ICM-42000 External Driver (E-H) 44 pin D-Sub Connector (Male) 192
ICM-42000 Encoder 15 pin D-Sub Connector (Female)............cccoeeveevenriecrinnennnnns 193
ICM-42000 Analog 15 pin D-sub Connector (Male)cccoevvevvieviincieniieieeieeenens 193
Connectors for ICM-42200 Interconnect Boardccceeveviieviieiiiieiieneeie e 194
ICM-42200 /O (A-D) 44 pin D-Sub Connector (Female).........ccccoceverererircennen. 194
ICM-42200 DMC-40x0 I/O (E-H) 44 pin D-Sub Connector (Female)................... 194

vi e Contents DMC-40x0

ICM-42200 Encoder 26 pin D-Sub Connector (Female)............cccoeevevienriecrinnennnnns 195

ICM-42200 Analog 15 pin D-sub Connector (Male)cccoevveerieviinienieenieeieennnns 195
Connectors for CMB-41012 Interconnect Board...........cccccuevinineninininieiiencneneneneeeeee 196
CMB-41012 Extended I/O 44 pin D-Sub Connector (Male)...........ccoecvervrerurnernnnnne 196
RS-232-Main Port (Male).......cccccverieiiieiieieeieieee ettt 196
RS-232-Auxiliary Port (Female)occoevieiiieiieieiiecieeee e 197
RS-422-Main Port (Non-Standard Option)ccceceeieneenieneeieeeeseeeeie e 197
RS-422-Auxiliary Port (Non-Standard Option)...........cccevveeveeieeienienieeeieeeeeeeens 197
BHREINET ...ttt 198

Jumper Description for ICM-42000 and CMB-41012.........c.covevivienieiieieeieeeeseeee e 198
Cable Connections for DMC-40X0c..oouiieriiiiniieetieeeieeeie ettt 199
Standard RS-232 SpecifiCationscceecvieiieiinieniieieeie et esre e sree e ens 199
DMC-40x0 Serial Cable SpecifiCations...........cccuerveerieecieriierienieeieeeeeeeeeesreeeeennens 200

Pin-Out Description for DMC-40XO0c.cocerieriieriieieeieseeieeieetesee e sseesesneseesseenseenseas 201
Configuring the Amplifier Enable Circuit..........cccveciveieeieniiiieieee e 203
ICM-42000 and ICM-42100........ccceeiririnirieiieieieenese ettt 203
DMC-4040 (Steps 1 and 2)...ccceeieiieiieieeieet ettt 203
DMC-4080 (Steps 1 and 2)....c.ceeuieiieiieieeieeiiesie ettt 205
DMC-4040 and DMC-4080 (StEP 3)..veeeeereeieieierienieriesiesieereereeneeseeeesieseeseesseeeeenes 207
DMC-4040 (Steps 4 and 5)....ccceoueruereeiieiieeieteie ettt e 214
DMC-4080 (Steps 4 and 5)....ceeoueiueeieeieeiieiieieie ettt 216
Coordinated Motion - Mathematical ANalySisS.........ccceerieieiiiniienerere e 218
Example- Communicating with OPTO-22 SNAP-B3000-ENETccccocveviiviieienieieennnne 221
DMC-40X0/DMC-2200 COMPATISONveeurieereeererrrenreereesesresseesseessessesseesseessesssesssesssessesssens 223
List 0f Other PUDIICALIONSc..erviitiriiitieiieiieieieseese ettt 224
Training SEMUINATS.c.eeitieriieiieieeieeeeeee et eetesteseessee st enseeseeessesseenseenseensesnsesseesseesseenseenses 224
CONACHING US ..ottt ettt et et e st e st et e et e esseessessaesseenseenseensesasesneesneensesnses 225
WARRANTY ettt ettt ettt bttt ebt et e e ene e 226
Integrated Amplifiers and Drivers 227
[0 1554 TSR PUS 227
AT — AMP-43040 (-D3040) ...eveeeeeeieeiieieeieieie ettt ettt eneeenens 227

A2 — AMP-43140 (-D3T40) ..eeieeeeeetieieeiete ettt 227

A3 — SDM-44040 (-DA040)oomieeeeee ettt 227

A4 — SDM-44T140 (-DAT140) .ottt 227

Al - AMP-43040 228
INETOAUCTION ..ttt sttt et ettt e e b e 228
Electrical SPECIfiCationscoevueruerieiiiiienieniniesieett ettt s s 229
Mating CONMECLOTSceuveureiiriinteriinteeieeiteet ettt st s sttt ettt ettt sbe b eaeeae 229
OPCIALION ...ttt ettt ettt ettt b e st b e bbbt e et e st st e s bt sheebeebeest et enbenteneenbenae 230
Brushless MOtOr SEUPcocvveuieuiieiieriieie ettt 230
Brushless Amplifier Software Setupcccoceeiiriiriiieree e 230
CROPPET MO ...ttt ettt et et e eneeeneens 230

Brush AmMpIfier OPeration........cccuieeuieriieriiieniieeieeeiee et eeieesreeereesaeeebeesbeeensee s 231

Using External AmMPITIErs.cooieiiieieieeeese e 231

Error Monitoring and ProteCtionc.cecuereieriieiiiiececeee e 231

Hall E1ror PrOtECtON «..c..eiieiieiieieiesieeieee e 232
Under-Voltage ProteCtion..........c.ccveriieriieiieienieieeiieee ettt see e esaeeae e e 232
OVEr-Voltage ProteCtion.........ceecvieieriieriieiieieeieseesie e eae st seee e aeeseeeseeseeseenseas 232
OVer-Current ProteCtionc..coevirirereeiiieieienese sttt 232
Over-Temperature ProteCtionocvecvieeierienieniieieeie ettt 232

ELO TNPUL. .ottt ettt et ettt ettt et esabeesane e 233

A2 — AMP-43140 234

DMC-40x0 Contents e vii

INETOAUCTION ..ttt sttt et ee b e 234
Electrical SPeCifiCatiONScc.eecviriiiieiieieeiie et eee sttt ettt e seaesteebeesseessesseesseessaeseensas 235

Mating CONNECLOTSc.vvevieiieieeeieetiestteteesteeaesseesseesseesesaesaeesseeseensesnseeseanseenseensens 235

(05153 ¢4 (o) s USSP 236

Using External AMPITIers.......coevuiroierierierieie et 236

ELO INPUL. ettt ettt ettt ettt e et ene e e st e seenseeneean 236

A3 — SDM-44040 237
INELOQUCTION ...ttt ettt a et e bt e e ent e eneesaeesneesaeenaeenees 237
Electrical SPeCIfICAtIONSccvieiiiiiieieiieiieeie ettt ev et steesteebeesbeessesseesreesaeesaeennas 238

Mating CONNECTOTSouieiieiieiieeieeetiet ettt ettt et e et e s te st esbee et et et e sbeenbeeneeenreas 238

(00755 215 1) s WSRO PSRRI 239

Current Level Setup (AG Command)..........ccceevveeeverieiieneenieeeeeieseeseeesseevesseesneens 239

Low Current Setting (LC Command)...........cccecveriirierienienieneee e eeeseeeveeneens 239

Step Drive Resolution Setting (YA command)ccoecvevverivecienienienieeiesee e 239

ELO TNPUL. .ottt ettt ettt et sateesane e 240

A4 — SDM-44140 241
INELOQUCTION ...ttt ettt a et e bt e e ent e eneesaeesneesaeenaeenees 241
Electrical SPecifiCationsc.eecuieiirieiieiee ettt 242

Mating CONNECLOTSc.vieiieiieieeeieetiestt et eteetee st e sbeeste e e s eesaeeseeeneeeneeeneeeneeseeneeeneens 242

(0075 215 10 s NSRSt 243

Current Level Setup (AG Command).........cceeeveereeerieenieeiieeieeeiiesieeeieesveeevee e 243

Low Current Setting (LC Command).........c.cceceeuerieieneneneeieee e 243

ELO TNPUL. ettt ettt ettt ettt e et e e sabe e s aaeesaseesnbaennneens 243

Index 244

viii « Contents

DMC-40x0

Chapter 1 Overview

Introduction

The DMC-40x0 Series are Galil’s highest performance stand-alone controller. The controller series offers many
enhanced features including high speed communications, non-volatile program memory, faster encoder speeds, and
improved cabling for EMI reduction.

Each DMC-40x0 provides two communication channels: high speed RS-232 (2 channels up to 115K Baud) and
10BaseT Ethernet. The controllers allow for high-speed servo control up to 22 million encoder counts/sec and step
motor control up to 6 million steps per second. Sample rates as low as 31.25 psec per axis are available.

A Flash EEPROM provides non-volatile memory for storing application programs, parameters, arrays and firmware.
New firmware revisions are easily upgraded in the field.

The DMC-40x0 is available with up to eight axes in a single stand alone unit. The DMC-4010, 4020, 4030, 4040
are one thru four axes controllers and the DMC-4050, 4060, 4070, 4080 are five thru eight axes controllers. All
eight axes have the ability to use Galil’s integrated amplifiers or drivers and connections for integrating external
devices.

Designed to solve complex motion problems, the DMC-40x0 can be used for applications involving jogging, point-
to-point positioning, vector positioning, electronic gearing, multiple move sequences, and contouring. The
controller eliminates jerk by programmable acceleration and deceleration with profile smoothing. For smooth
following of complex contours, the DMC-40x0 provides continuous vector feed of an infinite number of linear and
arc segments. The controller also features electronic gearing with multiple master axes as well as gantry mode
operation.

For synchronization with outside events, the DMC-40x0 provides uncommitted I/O, including 8 opto-isolated digital
inputs (16 inputs for DMC-4050 thru DMC-4080), 8 high power optically isolated outputs (16 outputs for DMC-
4050 thru DMC-4080), and 8 analog inputs for interface to joysticks, sensors, and pressure transducers. The DMC-
40x0 also has an additional 32 I/O at 3.3V logic. Further I/O is available if the auxiliary encoders are not being used
(2 inputs / each axis). Dedicated optoisolated inputs are provided for forward and reverse limits, abort, home, and
definable input interrupts.

Commands can be sent in either Binary or ASCII. Additional software is available for automatic-tuning, trajectory
viewing on a PC screen, CAD translation, and program development using many environments such as Visual
Basic, C, C++ etc. Drivers for Windows XP (32 & 64 bit).

DMC-40x0 Chapter 1 Overview o 1

Overview of Motor Types

The DMC-40x0 can provide the following types of motor control:
1. Standard servo motors with +/- 10 volt command signals
2. Brushless servo motors with sinusoidal commutation
3. Step motors with step and direction signals
4. Other actuators such as hydraulics - For more information, contact Galil.
The user can configure each axis for any combination of motor types, providing maximum flexibility.

Standard Servo Motor with +/- 10 Volt Command Signal

The DMC-40x0 achieves superior precision through use of a 16-Bit motor command output DAC and a
sophisticated PID filter that features velocity and acceleration feed-forward, an extra pole filter and integration
limits.

The controller is configured by the factory for standard servo motor operation. In this configuration, the controller
provides an analog signal (+/- 10 volts) to connect to a servo amplifier. This connection is described in Chapter 2.

Brushless Servo Motor with Sinusoidal Commutation

The DMC-40x0 can provide sinusoidal commutation for brushless motors (BLM). In this configuration, the
controller generates two sinusoidal signals for connection with amplifiers specifically designed for this purpose.

Note: The task of generating sinusoidal commutation may be accomplished in the brushless motor amplifier. If the
amplifier generates the sinusoidal commutation signals, only a single command signal is required and the controller
should be configured for a standard servo motor (described above).

Sinusoidal commutation in the controller can be used with linear and rotary BLMs. However, the motor velocity
should be limited such that a magnetic cycle lasts at least 6 milliseconds with a standard update rate of 1
millisecond. For faster motors, please contact the factory.

To simplify the wiring, the controller provides a one-time, automatic set-up procedure. When the controller has
been properly configured, the brushless motor parameters may be saved in non-volatile memory.

The DMC-40x0 can control BLMs equipped with Hall sensors as well as without Hall sensors. If Hall sensors are
available, once the controller has been setup, the brushless motor parameters may be saved in non-volatile memory.
In this case, the controller will automatically estimate the commutation phase upon reset. This allows the motor to
function immediately upon power up. The Hall effect sensors also provide a method for setting the precise
commutation phase. Chapter 2 describes the proper connection and procedure for using sinusoidal commutation of
brushless motors.

Stepper Motor with Step and Direction Signals

E The DMC-40x0 can control stepper motors. In this mode, the controller provides two signals to connect
to the stepper motor: Step and Direction. For stepper motor operation, the controller does not require an
encoder and operates the stepper motor in an open loop fashion. Chapter 2 describes the proper
connection and procedure for using stepper motors.

If encoders are available on the stepper motor, Galil’s Stepper Position Maintenance Mode may be used
for automatic monitoring and correction of the stepper position. See Stepper Position Maintenance
Mode (SPM) in Chapter 6 for more information.

2 ¢ Chapter 1 Overview DMC-40x0

Overview of External Amplifiers

The amplifiers should be suitable for the motor and may be linear or pulse-width-modulated. An amplifier may
have current feedback, voltage feedback or velocity feedback.

Amplifiers in Current Mode

Amplifiers in current mode should accept an analog command signal in the +/-10 volt range. The amplifier gain
should be set such that a +10V command will generate the maximum required current. For example, if the motor
peak current is 10A, the amplifier gain should be 1 A/V.

Amplifiers in Velocity Mode

For velocity mode amplifiers, a command signal of 10 volts should run the motor at the maximum required speed.
The velocity gain should be set such that an input signal of 10V runs the motor at the maximum required speed.

Stepper Motor Amplifiers
E For step motors, the amplifiers should accept step and direction signals.

Overview of Galil Amplifiers and Drivers

With the DMC-40x0 Galil offers a variety of Servo Amplifiers and Stepper Drivers that are integrated into the same
enclosure as the controller. Using the Galil Amplifiers and Drivers provides a simple straightforward motion control
solution in one box.

Al - AMP-43040 (-D30x0)

The AMP-43040 (four-axis) and AMP-43020 (two-axis) are multi-axis brush/brushless amplifiers that are capable of
handling 500 watts of continuous power per axis. The AMP-43040/43020 Brushless drive modules are connected to
a DMC-40x0. The standard amplifier accepts DC supply voltages from 18-80 VDC.

A2 - AMP-43140 (-D3140)

The AMP-43140 contains four linear drives for operating small brush-type servo motors. The AMP-43140 requires
a+ 12-30 DC Volt input. Output power is 20 W per amplifier or 60 W total. The gain of each transconductance
linear amplifier is 0.1 A/V at 1 A maximum current. The typical current loop bandwidth is 4 kHz.

A3 — SDM-44040 (-D4040)

The SDM-44040 is a stepper driver module capable of driving up to four bipolar two-phase stepper motors. The
current is selectable with options of 0.5, 0.75, 1.0, and 1.4 Amps/Phase. The step resolution is selectable with
options of full, half, 1/4 and 1/16.

A4 — SDM-44140 (-D4140)

The SDM-44140 microstepper module drives four bipolar two-phase stepper motors with 1/64 microstep resolution
(the SDM-44140 drives two). The current is selectable with options of 0.5, 1.0, 2.0, & 3.0 Amps per axis.

DMC-40x0 Chapter 1 Overview e 3

DMC-40x0 Functional Elements

The DMC-40x0 circuitry can be divided into the following functional groups as shown in Figure 1.1 and discussed

below.
WATCHDOG TIMER
ISOLATED LIMITS AND
P
HOME INPUTS
ETHERNET RISC BASED HIGH-SPEED 44— MAIN ENCODERS
—— MICROCOMPUTER L N| MOTOR/ENCODER l——— AUXILIARY ENCODERS
N INTERFACE » +-10 VOLT OUTPUT FOR
RS-232/ — FOR SERVO MOTORS
RS-422 —_— ABCD PULSE/DIRECTION OUTPUT
-
FOR STEP MOTORS
_ HIGH SPEED ENCODER
« >
32 Configurable I/O /O INTERFACE COMPARE OUTPUT

B |

8 PROGRAMMABLE

8 UNCOMMITTED 8 PROGRAMMABLE, HIGH POWER OPTOISOLATED
ANALOG INPUTS OPTOISOLATED OUTPUTS
INPUTS

HIGH-SPEED LATCH FOR EACH AXIS

Figure 1.1 - DMC-40x0 Functional Elements

Microcomputer Section

The main processing unit of the controller is a specialized Microcomputer with RAM and Flash EEPROM. The
RAM provides memory for variables, array elements, and application programs. The flash EEPROM provides non-
volatile storage of variables, programs, and arrays. The Flash also contains the firmware of the controller, which is
field upgradeable.

Motor Interface

Galil’s GL-1800 custom, sub-micron gate array performs quadrature decoding of each encoder at up to 12 MHz.
For standard servo operation, the controller generates a +/-10 volt analog signal (16 Bit DAC). For sinusoidal
commutation operation, the controller uses two DACs to generate two +/-10 volt analog signals. For stepper motor
operation, the controller generates a step and direction signal.

Communication

The communication interface with the DMC-40x0 consists of high speed RS-232 and Ethernet. The Ethernet is
10/100Bt and the two RS-232 channels can generate up to 115K.

4 ¢ Chapter 1 Overview DMC-40x0

General 1/0O

The DMC-40x0 provides interface circuitry for 8 bi-directional, optoisolated inputs, 8 high power optoisolated
outputs and 8 analog inputs with 12-Bit ADC (16-Bit optional). The DMC-40x0 also has an additional 32 I/O (3.3V
logic) and unused auxiliary encoder inputs may also be used as additional inputs (2 inputs / each axis). The general
inputs can also be used as high speed latches for each axis. A high speed encoder compare output is also provided.

The DMC-4050 through DMC-4080 controller provides an additional 8 optoisolated inputs and 8 high
power optoisolated outputs.

4080

System Elements

As shown in Fig. 1.2, the DMC-40x0 is part of a motion control system which includes amplifiers, motors and
encoders. These elements are described below.

Computer

DMC-40x0 Controller

Motor

A motor converts current into torque which produces motion. Each axis of motion requires a motor sized properly
to move the load at the required speed and acceleration. (Galil’s MotorSizer Web tool can help you with motor
sizing: www.galilmc.com/support/motorsizer)

Power Supply

Encoder

Amplifier (Driver)

Motor

Figure 1-.2 - Elements of Servo systems

The motor may be a step or servo motor and can be brush-type or brushless, rotary or linear. For step motors, the
controller can be configured to control full-step, half-step, or microstep drives. An encoder is not required when
step motors are used.

Other motors and devices such as Ultrasonic Ceramic motors and voice coils can be controlled with the DMC-40x0.

Amplifier (Driver)

For each axis, the power amplifier converts a +/-10 volt signal from the controller into current to drive the motor.
For stepper motors, the amplifier converts step and direction signals into current. The amplifier should be sized
properly to meet the power requirements of the motor. For brushless motors, an amplifier that provides electronic
commutation is required or the controller must be configured to provide sinusoidal commutation. The amplifiers
may be either pulse-width-modulated (PWM) or linear. They may also be configured for operation with or without
a tachometer. For current amplifiers, the amplifier gain should be set such that a 10 volt command generates the
maximum required current. For example, if the motor peak current is 10A, the amplifier gain should be 1 A/V. For

velocity mode amplifiers, 10 volts should run the motor at the maximum speed.

DMC-40x0

Chapter 1 Overview e 5

Galil offers amplifiers that are integrated into the same enclosure as the DMC-40x0. See the Integrated Amplifiers
and Drivers section in the

6 e Chapter 1 Overview DMC-40x0

Appendices or http://galilmc.com/products/accelera/dmc40x0.html for more information.

Encoder

An encoder translates motion into electrical pulses which are fed back into the controller. The DMC-40x0 accepts
feedback from either a rotary or linear encoder. Typical encoders provide two channels in quadrature, known as
CHA and CHB. This type of encoder is known as a quadrature encoder. Quadrature encoders may be either single-
ended (CHA and CHB) or differential (CHA,CHA- and CHB,CHB-). The DMC-40x0 decodes either type into
quadrature states or four times the number of cycles. Encoders may also have a third channel (or index) for
synchronization.

The DMC-40x0 can also interface to encoders with pulse and direction signals. Refer to the “CE” command in the
command reference for details.

There is no limit on encoder line density; however, the input frequency to the controller must not exceed 5,500,000
full encoder cycles/second (22,000,000 quadrature counts/sec). For example, if the encoder line density is 10,000
cycles per inch, the maximum speed is 300 inches/second. If higher encoder frequency is required, please consult
the factory.

The standard encoder voltage level is TTL (0-5v), however, voltage levels up to 12 Volts are acceptable. (If using
differential signals, 12 Volts can be input directly to the DMC-40x0. Single-ended 12 Volt signals require a bias
voltage input to the complementary inputs).

The DMC-40x0 can accept analog feedback (+/-10v) instead of an encoder for any axis. For more information see
the command AF in the command reference.

To interface with other types of position sensors such as absolute encoders, Galil can customize the controller and
command set. Please contact Galil to talk to one of our applications engineers about your particular system
requirements.

Watch Dog Timer

The DMC-40x0 provides an internal watch dog timer which checks for proper microprocessor operation. The timer
toggles the Amplifier Enable Output (AMPEN) which can be used to switch the amplifiers off in the event of a
serious DMC-40x0 failure. The AMPEN output is normally high. During power-up and if the microprocessor
ceases to function properly, the AMPEN output will go low. The error light will also turn on at this stage. A reset is
required to restore the DMC-40x0 to normal operation. Consult the factory for a Return Materials Authorization
(RMA) Number if your DMC-40x0 is damaged.

DMC-40x0 Chapter 1 Overview o 7

Chapter 2 Getting Started

DMC-4040 Layout

The following layouts assume either an ICM-42000(1000) or ICM-42100(1100) interconnect modules are installed.
For layouts of systems with ICM-42200’s(1200) installed please contact Galil. Overall dimensions and footprint are
identical, the only differences are in connector type and location.

Figure 2-1 - Outline of the of the DMC-4040

T acue

POWER

FOWER

+¥5

ENCODERD

ANALOG

43007
42004
4001
40 GND
35 FLSD
38 FLSC
ITFLSE
IEFLSA
38 GND
uoE
0I5
woe
HGND

i [e]e]e]
c GND [OOC

n-~—«~—~~~~"~~""~"""™"™"™"™"™"/"™"/"™"™"/'"™"/"/"/ /77"
|)
!
I N4
|
|
|
O & A B C
—~ (: ™~ ENGODER STEPPER
T Y& DMC-4040 s
| -+ raae TOHALA G m. A+ OO0 B+
13 HALB o AMA A [ClO]E
: GALIL GALIL MOTION GONTROL vl 11 S '
MADE IN USA wan TWE
| &M
|
|
|
! ¢ 4
| —
| < @ o
| £ £ £
| gl + | g + 8
1 F '@ &
|
|
| & ¢
|
| MTRM GND GND
| ATAM 5V 5V
| APWR 12V 12V
| AEEN AEC2
—
! © & © gz
I ANALOG)) B
=] - < 2 g o
= gaznp o AC0 = = 4+ E =
= 10AR o] @ 5
z nak = =
: = 1246 447 - 2 1 g
i 13418 &
£ AGND
| 14 NG =3
] e, & &t
|
: EXTENDED 1O EXTEAMAL DRIVER (A-D}
I 3tlo1 }2'&6 11018 & aisree PSP ae
| 321022 21021 = 42 RES ey 25TRC
18 1023] — 18 57PD
| JIGND gt 31024 £ JIGND 15 DIAA 3RES
41027 41026 w 34 DRE . ARES
| (D 3 20 1028 20 RES
| 308 57 a0 5102 3RES AN SOIRC
| F/OND h e IR BGND 5, en GRES
371064 23 ID35 71033 37 AENB 29 AENC TAENA
| RESET GB /N moar ° 1036 BWAECZ oy BAEND
I aanp 2087 gloe et mono SN0 onc
| 0i03! 1.0 1NC MO (D LINK/ACT MCMA o e 10120
I 411042 g2 111041 04K «REs BES imcHe
1 421045 o e 121044 19,26 Q} ERROR MCMD y pre 12RES
43.GND 131047 43GND ING
! ane 209 ne :I,IPGD POWE NG NG e
J| 043 4o pes ST $ A NG e ey

8 e Chapter 2 Getting Started

DMC-40x0

DMC-4080 Layout

Chapter 2 Getting Started e 9

Figure 2-2 - Outline of the of the DMC-4080

M= ===~ —mm e —————————————— m
I a3l 59 g e ST way IS gyg g . SHE g |
| p :nm.,_mm" Pl oNgE SN oW gz Mo T oNp SUE ONe :m_son_$ %“_ﬂ. anel poe one I

INEL ONDEF frl)-1% ONEL aNo ey LrOIEL aND EF
| e Eug e =1 HOE SOEE = WEL 900182 |
| sugy TOEL g SN oy o MW Y gy MOE oa ST g 5 INONZY HOHHI POIZE oo n SMOIZY
. Luav 2 AW 1 S3H iF Luv 02 NN L S3H ¥ AYEE req 2001 18 |
I O3 Toniz MO o SME ooy OB “amiz SO o S ooy on anor PO gooror |
| noaS1s ot IS ang MR T mOOS1E o VSHE one M e -o..iz:% 140 woe ONse GO _
o WML e FHE wave 2N aoave oH! gsme BHE oave 2N e sos FO% onge @.Emmm :
| vt oemi DTME aave BN v Dot osmn JHE wave MVE mave gwoi. SS% i i
| HINCH 01 Ll aND oF M9 HHIO 12 i QNCH 01 5w s OND Or indd owa iz il it Q12 oo 8 |
INE oHI0 S SIS N WS SIS 62018 DECH 52
| HMO 14 500 1t SIHE MO | 100 ¥ S . 820102 |
010022 s34+ 4410 ¥ 200 22 s34+ BuI0 ¢ 9200 20N
| gz 200 zionar P T T w0z 0l waw b waoa BT 3 s seoie g |
e RS me % o 8 e e O Ew X2 g i e 5 |
" "
_ Ngegh MO : Sl g5 HISHK pgrs . SHL yygq WISHE n BOL g BONE _
| .mw (W3l on (H3) Y3NH0 WNLELE .mw. lavlon {0-¥) HINE0 WNHILA 01030N3Lx3 |
I = = I
! kil 5 158 e |
AZL-L
| |2 =k + |z 2 4 aors a4 |
| 2 2 . = 3 5 gz = _
| I_I M _ M I_l _ M = = AT Z
i g =] 5 W =] £ @ _ @ ﬂ“.«“ 2w] _
T o = F F I = NV 6 =
L 3 £ . £ 8 & . & E E oo . 31
= = DOTNY |
| m m |
N e g8
! 2 ¢ & ¢ ¢ & & o |
| 203w 193¥ 203 VI |
| i i nzi nzi+ HMY
A5t As+ A5+ As+ HLY !
_ N e -] ane WELN |
| & & @ o & |
! & & ¢ _
| |
_ | m ' m 1 m i W b W 1 W ' m I m _
R AR AR AR DR R R AR _
k] = k] = k] o El = |
| x =] - m o o @ = |
| |
|
. % & ® @ s © © © i
| |
| |
_ a2 swu WS NI 3aYI _
ez v
! = u% = m%& ot BB TOHLNOD NOLLOW YD 117V9 |
Sh* aN v + Y heikd IIVH L
_ a2 e 080v-ONd B h
_ HIMOd [T H3ddals H300ONT o &
|
| H3IMOd H 9 E| 3 b HIMOd @ 4] g Y b

R R o R o E EEE———————————
|
|
|
| - —_

. I
| $, &W,
| ’f_ r,..\;__
I] B [(el

DMC-40x0

DMC-40x0 Power Connections

Power Connectors for Galil integrated Amplifiers**
Power Connector for Controller

without Galil Amplifiers*

___ =
A A B C D POWER +* E F G H POWER
DMC-4080 ENCOOER STEPPER SERVD POWER
- 15489 SGND
whag DA, afglols: A NG]
GALIL MOTION CONTROL e :% g "'B B@C @ @
MADE IN USA 11 A4 é'._ 1Ml

ENCODER A
+
ENCODER B
+
ENCODER €
I
ENCODER D
|
ENCODER E
+
ENCODER F
+ @
ENCODER G
+ @
ENCODER H
+ @

©
P
@,

MTRM
ATAM

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|] ANALOG i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1
o = 1 = = 1 a
3 saaD A0 - z < < 8 & & =
R 102) @ @ = =] g = o 1
= LT 4 = g = —I— =z = i +
£ 2w (i z 2 E £ &
& 13 08 3 2
6 AGHD
+| B T T 4 + |+ +
7z
15412V - -3
85V & &
8]
EXTENDED 10 EXTERNAL DRIVER (A-D) 10 (A0} $' EXTERNAL DRIVER (E-H) VO EH) $‘
HINT = 16 5TPA 15484 N 15 STPE . 15481
F T I] PR Dacur B saomer UGN sour 00 ioRer
= o tioe 208 & fopi T 1 w007 200 13006 e st 20T aspois 200 130014
uw 0% e E sors 0P pes 2000 pge 12002 sore BOFE pes 20012 room 1200V
7 2i0e o 20RES 41001 11 OPWR 20RES 41008 11 OPWR
O BN nom 302 BRES nopmp SO weo BN 0o BRES oipmn SRS e ERT 0o
3% GHD 61032] BRES HALS0 %G G RES RS
Tiow ZNE gy wapne BAEC g BAS ums FHOM A EAEE e BAM s FHOMG
—— RESET@ HNC ,ﬁ'&?? 81038 sactz 200 sacko R mmm SHOR mactz 2000 aack FRE ans SOF
GND 4 08 oPT HGND aNG Z2ALSA 3 GHD aNG 2 RLSE
2NT UNKIACT 2512V .FLSA £LSCOM . B WAL LSCOM
K g TONC 1) sepeg 0 e ONC cpa e ey DNC cpe
411042 - 111041 41 RES - 11 MCVB ABRT - 41 RES - 1" ABRT
271043 K 27 MCMC 08 400 27 MCMG 00 4008
21045 121044 a2 £ erron 12RES ok 12RES 190114
ooy s 20 o wREs 308 30 RES 3003 300z
7 ey NG 108 Qs NE won
HNC g";_‘fv NG WRST '$-POWER HNC g: UNC fg‘j 17 NCOM fg:'ﬁ HNT g: NG gfg'; 7 2?:‘
15RES L 16 RST 155V 16RST

+VDC (18-80%)

DC GROUND
_—

Figure 2-4 — Power Connector used when controller is ordered without Galil Amplifiers

*Also used for powering the controller when using the (Linear Amplifier).

**See Power connector information for specific amplifiers in the Integrated Amplifiers and Drivers section of the Appendices.

For more information on Connectors (mfg PN’s and diagrams) see the Power Connector Section in the Appendix.

10 e Chapter 2 Getting Started DMC-40x0

DMC-4040 Dimensions

8.05
4 PLCS \ 7.55
] == = =
My Lo [I fan
Lozl iz T
| l N
I |
T w A B Cc D POWER @O
m ENCO0E sTerRER = FOWER
| DMC-4040 =™l ER R emm | |
GALIL sauLuomoncotaol e e e ADoER o Sloble eolous)
MADE IN LISk nam DE e
| & & & &
< - & =
15t & G
| 1 1 1 1
| & & & 3 |
NI o o
o 2 -
| - @ |= |
& @ & & it & ¢
i 2 2 ' y 2 ' |
A
! weot® Bl 4| §| 4| B 3
| el g i) E +
) AR 4 AGND]
| T+ ouw e & & + +
i EXTERDED 10 EXTERMAL DFIVER (A0 IDI-I-DJ$' |
- g% vl a § g v il J e 2 U
| & Imoamam 3 & o m g wmomm il |
® o s i P ik 25, o 1 @
| wow 2R om e ZAE e i T T e
|[ressT € wne DR aow was 300 o Pras @@ 500 f
WO e G0 o1 ety 1] AE EAS o I
') ONT] ¢"—"M AU L B
| sioe BO0 ok e ares T acS oy e S0 |
oy SeoEsim ax | Qe s i e i oam G
AT i 700 . 1 _ mm AN aon AT
jae) ey N s [— T T T e

08080
Qo0
(OX®)
Q00
(OX®)
Q00
(OX@)
OOOOO
1 OO0
(OX®)
OOOOO
Q00

F OO0
ogogo
000

ONONG)]
08080
Q00/

Q00

Figure 2-5 — Dimensions of DMC-4040

= 0125

1.4

DMC-40x0

Chapter 2 Getting Started o 11

WL ——=
SZL0 f—

DMC-40x0

T T
1849 s i fava =T
I 4] T A S, | S S L S U L Sy S — o - st
1 *0: T vam . e ME anp me Tegn WNE wmer B omn wh aon PR g
I war EHTED R mE WE EME i1 O
war MR e N w2 TEN S wmr MY wiw T o T o3 I poz T
vz 0N L B LR B =1 e Il EL I I
U Towg DR [et 1 e Twe 20% e 2 e bl e %% maw
M goi IEEE ey AR T DR oo WHE T LN 0 e T e
= i it = - o e t-cif it =t - P - =H e i @.E.&
O O O ot pdt ot L~ e et e o] F bt]] bt] bt
[@X0) =22 et LT gmor Gy ‘e GRS aun TR aew s ome T Zos Uiz Q5T &$
WL 501k 5 W 1L 100 1e e R
i T i sy JU e man T8 o Sy o HMRE sl ool B0
rogis il Sl B ' g dh L] e] g 4 OdLS B " e XL -3
o O L bad LS E 5 o e HIET 534 & e 20T
ey e 5341 Zon ana L = [on]
el L e MO e et o 1 L= 2l NTL [o L Tl 1

OOOOO .Q. don (3l SR TNEDE $ Ipvion NHALE el T

o000

+ +
3o + . .
OX®) m z 3
o O O L W ' U W !
OXOX r s i 5 % Y
OX®) % |E =
OOOOO @
o000 @ Ry @ g

@ ¢
o O)
00 i))) & :) i &]

00 @ P 9 @
OOOOO

O O O i Wi WG I SOV
e 3w TOHLNCD MOLLOW TTVD TIvD

Gt U o T
OOOOO _“m‘.-oo,_w{ oz_u“rw-“ __u._—l.“_m [L Dmovlozn {@U d

(3] N0 TN
+
DO

(o) HANHO TV ALNE
oo
oL

dz38:8

: fa1ss

g3tg
[T
[]
£zt

S8 T

Figure 2-6 Dimensions of DMC-4080

DMC-4080 Dimensions

©0 @ HImod H Bl 4 3 b HIMOd T 2 ;] v *+ @
L . - > - = === > > > il
7) — I Y N I\ S —
oot 507d ¥
051 10z 08

12 e Chapter 2 Getting Started

Elements You Need

For a complete system, Galil recommends the following elements:
1. DMC-4010, 4020, 4030, or DMC-4040 Motion Controller
or
DMC-4050, 4060, 4070 or DMC-4080
2. Motor Amplifiers (Integrated when using Galil amplifiers and drivers)
3. Power Supply for Amplifiers and controller
4. Brush or Brushless Servo motors with Optical Encoders or stepper motors.
a. Cables for connecting to the DMC-40x0’s integrated ICM’s.
5. PC (Personal Computer - RS232 or Ethernet for DMC-40x0)
6. WSDK (recommend for first time users.) or DMC Smart Terminal
or
DMCWIN32 or other Galil API drivers for.

The WSDK software is highly recommended for first time users of the DMC-40x0. It provides step-by-step
instructions for system connection, tuning and analysis.

DMC-40x0 Chapter 2 Getting Started o 13

Installing the DMC-40x0

Installation of a complete, operational DMC-40x0 system consists of 9 steps.
Step 1. Determine overall motor configuration.
Step 2. Install Jumpers on the DMC-40x0.
Step 3. Install the communications software.
Step 4. Connect DC power to controller.
Step 5. Establish communications with the Galil Communication Software.
Step 6. Determine the Axes to be used for sinusoidal commutation.
Step 7. Make connections to amplifier and encoder.
Step 8a. Connect standard servo motors.
Step 8b. Connect sinusoidal commutation motors
Step 8c. Connect step motors.

Step 9. Tune the servo system

Step 1. Determine Overall Motor Configuration

Before setting up the motion control system, the user must determine the desired motor configuration. The DMC-
40x0 can control any combination of standard servo motors, sinusoidally commutated brushless motors, and stepper
motors. Other types of actuators, such as hydraulics can also be controlled, please consult Galil.

The following configuration information is necessary to determine the proper motor configuration:

Standard Servo Motor Operation:

Unless ordered with stepper motor drivers or in a non-standard configuration, the DMC-40x0 has been setup by the
factory for standard servo motor operation providing an analog command signal of +/- 10V. No hardware or
software configuration is required for standard servo motor operation.

Sinusoidal Commutation:

Sinusoidal commutation is configured through a single software command, BA. This configuration causes the
controller to reconfigure the number of available control axes.

Each sinusoidally commutated motor requires two DACs. In standard servo operation, the DMC-40x0 has one DAC
per axis. In order to have the additional DAC for sinusoidal commutation, the controller must be designated as
having one additional axis for each sinusoidal commutation axis. For example, to control two standard servo axes
and one axis of sinusoidal commutation, the controller will require a total of four DACs and the controller must be a
DMC-4040.

Sinusoidal commutation is configured with the command, BA. For example, BAA sets the A axis to be sinusoidally
commutated. The second DAC for the sinusoidal signal will be the highest available DAC on the controller. For
example: Using a DMC-4040, the command BAA will configure the A axis to be the main sinusoidal signal and the
'D' axis to be the second sinusoidal signal.

The BA command also reconfigures the controller to indicate that the controller has one less axis of 'standard’
control for each axis of sinusoidal commutation. For example, if the command BAA is given to a DMC-4040
controller, the controller will be re-configured to a DMC-4030 controller. By definition, a DMC-4030 controls 3
axes: A,B and C. The 'D' axis is no longer available since the output DAC is being used for sinusoidal commutation.

Further instruction for sinusoidal commutation connections are discussed in Step 6.

14 e Chapter 2 Getting Started DMC-40x0

Stepper Motor Operation

To configure the DMC-40x0 for stepper motor operation, the controller requires that the command, MT, must be
given. Further instruction for stepper motor connections are discussed in Step 8c.

Step 2. Install Jumpers on the DMC-40x0

Master Reset and Upgrade Jumpers

JP1 on the main board contains two jumpers, MRST and UPGRD. The MRST jumper is the Master Reset jumper.
When MRST is connected, the controller will perform a master reset upon PC power up or upon the reset input
going low. Whenever the controller has a master reset, all programs, arrays, variables, and motion control
parameters stored in EEPROM will be ERASED.

The UPGRD jumper enables the user to unconditionally update the controller’s firmware. This jumper is not
necessary for firmware updates when the controller is operating normally, but may be necessary in cases of
corrupted EEPROM. EEPROM corruption should never occur, however, it is possible if there is a power fault
during a firmware update. If EEPROM corruption occurs, your controller may not operate properly. In this case,
install the UPGRD Jumper and use the update firmware function on the Galil Terminal to re-load the system
firmware.

Motor Off Jumpers

The state of the motor upon power up may be selected with the placement of a hardware jumper on the controller.
With a jumper installed at the MO location, the controller will be powered up in the “motor off” state. The SH
command will need to be issued in order for the motor to be enabled. With no jumper installed, the controller will
immediately enable the motor upon power up. The MO command will need to be issued to turn the motor off,
unless an error occurs that will turn the motors off. The MO jumper is located on JP1, the same block as the Master
Reset and Upgrade jumpers.

Communications Jumpers for DMC-40x0

The baud rate for RS232 communication can be set with jumpers found on JP1 of the communication board (same
set of jumpers where MO, MRST and UPGD can be found). To set the baud rate to the desired value, see Table 2-

below.
19.2 38.4 BAUD RATE
ON ON 9600
ON OFF 19200
OFF ON 38400
OFF OFF 115200

Table 2-1 : Baud Rate Jumper Settings

Other serial communication protocols, such as RS-485, can be implemented as a special - consult Galil.

Step 3. Install the Communications Software
After applying power to the computer, you should install the Galil software that enables communication between the
controller and PC.
Using Windows XP (32 & 64 bit):

Install the Galil Software Products CD-ROM into your CD drive. A Galil .htm page should automatically appear
with links to the software products. Select “DMCSmartTerm” and click “Install...” Follow the installation procedure

as outlined.

DMC-40x0 Chapter 2 Getting Started o 15

Note: Galil software is also available for download at: http://www.galilmc.com/support/download.html

Step 4. Connect 18-80VDC Power to the Controller

If the controller was ordered with Galil Amplifiers or Drivers, then power to the controller will be supplied through
those power connectors. Otherwise the power will come through the connector on the side of the controller. See
DMC-40x0 Power Connections.

WARNING: Dangerous voltages, current, temperatures and energy levels exist in this product and
the associated amplifiers and servo motor(s). Extreme caution should be exercised in the
application of this equipment. Only qualified individuals should attempt to install, set up and
operate this equipment. Never open the controller box when DC power is applied to it.

The green power light indicator should go on when power is applied.

Step 5. Establish Communications with Galil Software

Communicating through the Main Serial Communications Port

Connect the DMC-40x0 MAIN serial port to your computer via the Galil CABLE-9PIN-D (RS-232 Cable). This is
a straight through serial cable - NOT a NULL modem.

Using Galil Software for Windows

In order for the windows software to communicate with a Galil controller, the controller must be registered in the
Windows Registry. To register a controller, you must specify the model of the controller, the communication
parameters, and other information. The registry is accessed through the Galil software under the “File” menu in
WSDK or under the “Tools” menu in the Galil Smart Terminal.

A dedicated network card with a static IP address is recommended. To set your NIC card to a static IP with
Windows XP, go to the Control Panel > Network Connections = Local Area Connection > Properties > TCP/IP
and choose “use the following IP address”. If a “Dynamic” IP address is used make sure there is a DHCP Server on
your network or you will encounter an error.

The registry window is equipped with buttons to Add a New Controller, change the Properties of an existing
controller, Delete a controller, or Find an Ethernet Controller.

Use the “New Controller” button to add a new entry to the Registry. You will need to supply the Galil Controller
model (eg: DMC-40x0). Pressing the down arrow to the right of this field will reveal a menu of valid controller
types. You then need to choose serial or Ethernet connection. The registry information will show a default Comm.
Port of 1 and a default Comm. Speed of 115200 appears. This information can be changed as necessary to reflect
the computers Comm. Port and the baud rate set by the jumpers found on the communications board. The registry
entry also displays timeout and delay information. These are advanced parameters which should only be modified
by advanced users (see software documentation for more information).

Once you have set the appropriate Registry information for your controller, Select OK and close the registry
window. You will now be able to communicate with the controller.

To establish communication to the controller, open up the Terminal and hit the “Enter” key. You should receive a
colon prompt. Communicating with the controller is described in later sections.

If you are not properly communicating with the controller, the program will pause for 3-15 seconds and an error
message will be displayed. In this case, there is most likely an incorrect setting of the serial communications port or
the serial cable is not connected properly. The user must ensure that the correct communication port and baud rate
are specified when attempting to communicate with the controller. Please note that the serial port on the controller
must be set for handshake mode for proper communication with Galil software. The user must also insure that a
“straight-through” serial cable is being used (NOT a Null Modem cable), see appendix for pin-out of serial cable.

16 e Chapter 2 Getting Started DMC-40x0

Using Non-Galil Communication Software

The DMC-40x0 main serial port is configured as DATASET. Your computer or terminal must be configured as a
DATATERM for full duplex, no parity, 8 data bits, one start bit and one stop bit.

Check to insure that the baud rate jumpers have been set to the desired baud rate as described above.

Y our computer needs to be configured as a "dumb" terminal which sends ASCII characters as they are typed to the
DMC-40x0.

Communicating through the Ethernet

Using Galil Software for Windows

The controller must be registered in the Windows registry for the host computer to communicate with it. The
registry may be accessed via Galil software, such as WSDK or GALIL Smart Terminal.

A dedicated network card with a static IP address is recommended. To set your NIC card to a static IP, go to the
Control Panel 2 Network Connections = Local Area Connection = Properties > TCP/IP and choose “use the
following IP address”. If a “Dynamic” IP address is used, make sure there is a DHCP Server on your network or
you will encounter an error.

Use the “New Controller” button to add a new entry in the registry or alternatively click on the “Find Ethernet
Controller” to have the software search for controllers connected to the network. When adding a new controller,
choose DMC-40x0 as the controller type. Enter the IP address obtained from your system administrator. Select the
button corresponding to the UDP or TCP protocol in which you wish to communicate with the controller. If the IP
address has not been already assigned to the controller, click on ASSIGN IP ADDRESS.

ASSIGN IP ADDRESS will check the controllers that are linked to the network to see which ones do not have an
IP address. The program will then ask you whether you would like to assign the IP address you entered to the
controller with the specified serial number. Click on YES to assign it, NO to move to next controller, or CANCEL
to not save the changes. If there are no controllers on the network that do not have an IP address assigned, the
program will state this.

When done registering, click on OK. If you do not wish to save the changes, click on CANCEL.

Once the controller has been registered, select the correct controller from the list and click on OK. If the software
successfully established communications with the controller, the registry entry will be displayed at the bottom of the
screen in the Status window.

NOTE: The controller must be registered via an Ethernet connection.

Sending Test Commands to the Terminal:

After you connect your terminal, press <return> or the <enter> key on your keyboard. In response to carriage return
<return>, the controller responds with a colon,

Now type
TPA <return>

This command directs the controller to return the current position of the A axis. The controller should respond with
a number such as

-0

Step 6. Determine the Axes to be Used for Sinusoidal Commutation

* This step is only required when the controller will be used to control a brushless motor(s) with sinusoidal
commutation.

DMC-40x0 Chapter 2 Getting Started o 17

The command, BA is used to select the axes of sinusoidal commutation. For example, BAAC sets A and C as axes
with sinusoidal commutation.

Notes on Configuring Sinusoidal Commutation:

The command, BA, reconfigures the controller such that it has one less axis of 'standard' control for each axis of
sinusoidal commutation. For example, if the command BAA is given to a DMC-4040 controller, the controller will
be re-configured to be a DMC-4030 controller. In this case the highest axis is no longer available except to be used
for the 2™ phase of the sinusoidal commutation. Note that the highest axis on a controller can never be configured
for sinusoidal commutation.

The DAC associated with the selected axis represents the first phase. The second phase uses the highest available
DAC. When more than one axis is configured for sinusoidal commutation, the controller will assign the second
phases to the DACs which have been made available through the axes reconfiguration. The highest sinusoidal
commutation axis will be assigned to the highest available DAC and the lowest sinusoidal commutation axis will be
assigned to the lowest available DAC. Note that the lowest axis is the A axis and the highest axis is the highest
available axis for which the controller has been configured.

Example: Sinusoidal Commutation Configuration using a DMC-4070
BAAC

This command causes the controller to be reconfigured as a DMC-4050 controller. The A and C axes are configured
for sinusoidal commutation. The first phase of the A axis will be the motor command A signal. The second phase
of the A axis will be F signal. The first phase of the C axis will be the motor command C signal. The second phase
of the C axis will be the motor command G signal.

Step 7. Make Connections to Amplifier and Encoder.

If the system is run solely by Galil’s integrated amplifiers or drivers, skip this section, the amplifier is already
connected to the controller.

Once you have established communications between the software and the DMC-40x0, you are ready to connect the
rest of the motion control system. The motion control system typically consists of the controller with interconnect
module, an amplifier for each axis of motion, and a motor to transform the current from the amplifier into torque for
motion.

System connection procedures will depend on system components and motor types. Any combination of motor
types can be used with the DMC-40x0. There can also be a combination of axes running from Galil integrated
amplifiers and drivers and external amplifiers or drivers. If sinusoidal commutation is to be used, special attention
must be paid to the reconfiguration of axes (see above section for more information).

Connecting to External Amplifiers

Here are the first steps for connecting a motion control system:

Step A. Connect the motor to the amplifier with no connection to the controller. Consult the amplifier
documentation for instructions regarding proper connections. Connect and turn-on the amplifier power
supply. If the amplifiers are operating properly, the motor should stand still even when the amplifiers are
powered up.

Step B. Connect the amplifier enable signal.

Before making any connections from the amplifier to the controller, you need to verify that the ground
level of the amplifier is either floating or at the same potential as earth.

WARNING: When the amplifier ground is not isolated from the power line or when it has
a different potential than that of the computer ground, serious damage may result to the
computer controller and amplifier.

18 e Chapter 2 Getting Started DMC-40x0

If you are not sure about the potential of the ground levels, connect the two ground signals (amplifier
ground and earth) by a 10 kQ resistor and measure the voltage across the resistor. Only if the voltage is
zero, connect the two ground signals directly.

The amplifier enable signal is used by the controller to disable the motor. When configured with the ICM-
42000 or ICM-42100, this signal is labeled AENA for the A axis and is found on the 15 pin Dsub
connector associated with the A axis (if configured with the ICM-42200 the AENA signal is located on the
26 pin Dsub associated with the A axis). Note that many amplifiers designate this signal as the INHIBIT
signal. Use the command, MO, to disable the motor amplifiers - check to insure that the motor amplifiers
have been disabled (often this is indicated by an LED on the amplifier).

This signal changes under the following conditions: the watchdog timer activates, the motor-off command,
MO, is given, or the OE3 command (Enable Off-On-Error) is given and the position error exceeds the error
limit. AMPEN can be used to disable the amplifier for these conditions.

The AMPEN signal from the DMC-40x0 is shipped as a default of 5V active high or high amp enable. In
other words, the AMPEN signal will be high when the controller expects the amplifier to be enabled.

If your amplifier requires a different configuration it is highly recommended that the DMC-40x0 is
ordered with the desired configuration. See the DMC-40x0 ordering information in the catalog
(http://www.galilmc.com/catalog/cat40x0.pdf) or contact Galil for more information on ordering different
configurations. If the amplifier enable needs to be changed, see the ICM-42000 and ICM-42100 Amplifier
Enable Circuit section in Chapter 3 Connecting Hardware.

When ordered with ICM-42000’s or ICM-42100’s the AEN signal is configurable for axes 1-4 and axes 5-8.
Ex — axes 1-4 could be ordered as 5V high amp enable, and axes 5-8 could be ordered as 12V low amp
enable. When ordered with ICM-42200’s each axis is individually configurable.

Step C. Connect the encoders

For stepper motor operation, an encoder is optional.

For servo motor operation, if you have a preferred definition of the forward and reverse directions, make
sure that the encoder wiring is consistent with that definition.

The DMC-40x0 accepts single-ended or differential encoder feedback with or without an index pulse. The
encoder signals are wired to that axis associated 15pin DSub connector found on top of the controller. The
signal leads are labeled MA+ (channel A), MB+ (channel B), and MI+. For differential encoders, the
complement signals are labeled MA-, MB-, and MI-. For complete pin-out information see Connectors for
ICM-42000 Interconnect Board in the Appendices.

NOTE: When using pulse and direction encoders, the pulse signal is connected to CHA and the direction
signal is connected to CHB. The controller must be configured for pulse and direction with the command
CE. See the command summary for further information on the command CE.

Step D. Verify proper encoder operation.

Start with the A encoder first. Once it is connected, turn the motor shaft and interrogate the position with
the instruction TPA <return>. The controller response will vary as the motor is turned.

At this point, if TPA does not vary with encoder rotation, there are three possibilities:
1. The encoder connections are incorrect - check the wiring as necessary.

2. The encoder has failed - using an oscilloscope, observe the encoder signals. Verify that both channels
A and B have a peak magnitude between 5 and 12 volts. Note that if only one encoder channel fails,
the position reporting varies by one count only. If the encoder failed, replace the encoder. If you
cannot observe the encoder signals, try a different encoder.

3. There is a hardware failure in the controller - connect the same encoder to a different axis. If the
problem disappears, you may have a hardware failure. Consult the factory for help.

Step E. Connect Hall Sensors if available.

DMC-40x0

Chapter 2 Getting Started o 19

Hall sensors are only used with sinusoidal commutation and are not necessary for proper operation. The
use of Hall sensors allows the controller to automatically estimate the commutation phase upon reset and
also provides the controller the ability to set a more precise commutation phase. Without Hall sensors, the
commutation phase must be determined manually.

The Hall Effect sensors are connected to the digital inputs of the controller. These inputs can be used with
the general use inputs (bits 1-8), the auxiliary encoder inputs (bits 81-96), or the extended I/O inputs of the
DMC-40x0 controller (bits 17-80).

NOTE: The general use inputs are optoisolated and require a voltage connection at the INCOM point - for
more information regarding the digital inputs, see Chapter 3, Connecting Hardware.

Each set of sensors must use inputs that are in consecutive order. The input lines are specified with the
command, BI. For example, if the Hall sensors of the C axis are connected to inputs 6, 7 and 8, use the
instruction:

BlI ,, 6 or
BIC = 6

Step 8a. Connect Standard Servo Motors

The following discussion applies to connecting the DMC-40x0 controller to standard servo motors:

The motor and the amplifier may be configured in the torque or the velocity mode. In the torque mode, the amplifier
gain should be such that a 10 volt signal generates the maximum required current. In the velocity mode, a command
signal of 10 volts should run the motor at the maximum required speed. For Galil amplifiers, see Integrated
Amplifiers and Drivers.

Step by step directions on servo system setup are also included on the WSDK (Windows Servo Design Kit) software
offered by Galil. See section on WSDK for more details.

Step A. Check the Polarity of the Feedback Loop

It is assumed that the motor and amplifier are connected together and that the encoder is operating correct
(Step 7). Before connecting the motor amplifiers to the controller, read the following discussion on setting
Error Limits and Torque Limits. Note that this discussion only uses the A axis as an examples.

Step B. Set the Error Limit as a Safety Precaution

Usually, there is uncertainty about the correct polarity of the feedback. The wrong polarity causes the
motor to run away from the starting position. Using a terminal program, such as DMC Smart Terminal,
the following parameters can be given to avoid system damage:

Input the commands:

ER 2000 <return> Sets error limit on the A axis to be 2000 encoder counts

OE 1 <return> Disables A axis amplifier when excess position error exists

If the motor runs away and creates a position error of 2000 counts, the motor amplifier will be disabled.
NOTE: This function requires the AMPEN signal to be connected from the controller to the amplifier.
Step C. Set Torque Limit as a Safety Precaution

To limit the maximum voltage signal to your amplifier, the DMC-40x0 controller has a torque limit
command, TL. This command sets the maximum voltage output of the controller and can be used to avoid
excessive torque or speed when initially setting up a servo system.

When operating an amplifier in torque mode, the voltage output of the controller will be directly related to
the torque output of the motor. The user is responsible for determining this relationship using the
documentation of the motor and amplifier. The torque limit can be set to a value that will limit the motors
output torque.

20 e Chapter 2 Getting Started DMC-40x0

When operating an amplifier in velocity or voltage mode, the voltage output of the controller will be
directly related to the velocity of the motor. The user is responsible for determining this relationship using
the documentation of the motor and amplifier. The torque limit can be set to a value that will limit the
speed of the motor.

For example, the following command will limit the output of the controller to 1 volt on the X axis:
TL 1 <return>

NOTE: Once the correct polarity of the feedback loop has been determined, the torque limit should, in general,
be increased to the default value of 9.99. The servo will not operate properly if the torque limit is below
the normal operating range. See description of TL in the command reference.

Step D. Connect the Motor

Once the parameters have been set, connect the analog motor command signal (MCMn where n is A-H) to
the amplifier input.

To test the polarity of the feedback, command a move with the instruction:
PR 1000 <CR> Position relative 1000 counts
BGA <CR> Begin motion on A axis

When the polarity of the feedback is wrong, the motor will attempt to run away. The controller should
disable the motor when the position error exceeds 2000 counts. If the motor runs away, the polarity of the
loop must be inverted.

Inverting the Loop Polarity

When the polarity of the feedback is incorrect, the user must invert the loop polarity and this may be accomplished
by several methods. If you are driving a brush-type DC motor, the simplest way is to invert the two motor wires
(typically red and black). For example, switch the M1 and M2 connections going from your amplifier to the motor.
When driving a brushless motor, the polarity reversal may be done with the encoder. If you are using a single-ended
encoder, interchange the signal MA+ and MB+. If, on the other hand, you are using a differential encoder,
interchange only MA+ and MA-. The loop polarity and encoder polarity can also be affected through software with
the MT, and CE commands. For more details on the MT command or the CE command, see the Command
Reference section.

Sometimes the feedback polarity is correct (the motor does not attempt to run away) but the direction of motion is
reversed with respect to the commanded motion. If this is the case, reverse the motor leads AND the encoder
signals.

If the motor moves in the required direction but stops short of the target, it is most likely due to insufficient torque
output from the motor command signal MCMn. This can be alleviated by reducing system friction on the motors.
The instruction:

TTA <return> Tell torque on A
reports the level of the output signal. It will show a non-zero value that is below the friction level.

Once you have established that you have closed the loop with the correct polarity, you can move on to the
compensation phase (servo system tuning) to adjust the PID filter parameters, KP, KD and KI. It is necessary to
accurately tune your servo system to ensure fidelity of position and minimize motion oscillation as described in the
next section.

Step 8b. Connect Sinusoidal Commutation Motors

When using sinusoidal commutation, the parameters for the commutation must be determined and saved in the
controller’s non-volatile memory. The setup for sinusoidal commutation is different when using Hall Sensors. Each
step which is affected by Hall Sensor Operation is divided into two parts, part 1 and part 2. After connecting
sinusoidal commutation motors, the servos must be tuned as described in Step 9.

DMC-40x0 Chapter 2 Getting Started o 21

Step A. Disable the motor amplifier
Use the command, MO, to disable the motor amplifiers. For example, MOA will turn the A axis motor off.
Step B. Connect the motor amplifier to the controller.

The sinusoidal commutation amplifier requires 2 signals, usually denoted as Phase A & Phase B. These
inputs should be connected to the two sinusoidal signals generated by the controller. The first signal is the
axis specified with the command, BA (Step 6). The second signal is associated with the highest analog
command signal available on the controller - note that this axis was made unavailable for standard servo
operation by the command BA.

When more than one axis is configured for sinusoidal commutation, the controller will assign the second
phase to the command output which has been made available through the axes reconfiguration. The 2™
phase of the highest sinusoidal commutation axis will be the highest command output and the 2™ phase of
the lowest sinusoidal commutation axis will be the lowest command output.

It is not necessary to be concerned with cross-wiring the 1% and 2™ signals. If this wiring is incorrect, the
setup procedure will alert the user (Step D).

Example: Sinusoidal Commutation Configuration using a DMC-4070
BAAC
This command causes the controller to be reconfigured as a DMC-4050 controller. The A and C axes are
configured for sinusoidal commutation. The first phase of the A axis will be the motor command A signal.

The second phase of the A axis will be the motor command F signal. The first phase of the C axis will be
the motor command C signal. The second phase of the C axis will be the motor command G signal.

Step C. Specify the Size of the Magnetic Cycle.

Use the command, BM, to specify the size of the brushless motors magnetic cycle in encoder counts. For
example, if the X axis is a linear motor where the magnetic cycle length is 62 mm, and the encoder
resolution is 1 micron, the cycle equals 62,000 counts. This can be commanded with the command:

BM 62000

On the other hand, if the C axis is a rotary motor with 4000 counts per revolution and 3 magnetic cycles
per revolution (three pole pairs) the command is:

BM,, 1333.333
Step D - part 1 (Systems with or without Hall Sensors). Test the Polarity of the DACs

Use the brushless motor setup command, BS, to test the polarity of the output DACs. This command
applies a certain voltage, V, to each phase for some time T, and checks to see if the motion is in the correct
direction.

The user must specify the value for V and T. For example, the command:
BSA = 2,700

will test the A axis with a voltage of 2 volts, applying it for 700 millisecond for each phase. In response,
this test indicates whether the DAC wiring is correct and will indicate an approximate value of BM. If the
wiring is correct, the approximate value for BM will agree with the value used in the previous step.

NOTE: In order to properly conduct the brushless setup, the motor must be allowed to move a minimum of one
magnetic cycle in both directions.

NOTE: When using Galil Windows software, the timeout must be set to a minimum of 10 seconds (time-out =
10000) when executing the BS command. This allows the software to retrieve all messages returned from
the controller.

Step D - part 2 (Systems with Hall Sensors Only). Test the Hall Sensor Configuration.

22 e Chapter 2 Getting Started DMC-40x0

Since the Hall sensors are connected randomly, it is very likely that they are wired in the incorrect order.
The brushless setup command indicates the correct wiring of the Hall sensors. The Hall sensor wires
should be re-configured to reflect the results of this test.

The setup command also reports the position offset of the Hall transition point and the zero phase of the
motor commutation. The zero transition of the Hall sensors typically occur at 0°, 30° or 90° of the phase
commutation. It is necessary to inform the controller about the offset of the Hall sensor and this is done
with the instruction, BB.

Step E. Save Brushless Motor Configuration

It is very important to save the brushless motor configuration in non-volatile memory. After the motor
wiring and setup parameters have been properly configured, the burn command, BN, should be given.

NOTE: Without Hall sensors, the controller will not be able to estimate the commutation phase of the
brushless motor. In this case, the controller could become unstable until the commutation phase has been
set using the BZ command (see next step). It is highly recommended that the motor off command be given
before executing the BN command. In this case, the motor will be disabled upon power up or reset and the
commutation phase can be set before enabling the motor.

Step F - part 1 (Systems with or without Hall Sensors). Set Zero Commutation Phase

When an axis has been defined as sinusoidally commutated, the controller must have an estimate for
commutation phase. When Hall sensors are used, the controller automatically estimates this value upon
reset of the controller. If no Hall sensors are used, the controller will not be able to make this estimate and
the commutation phase must be set before enabling the motor.

To initialize the commutation without Hall effect sensor use the command, BZ. This function drives the
motor to a position where the commutation phase is zero, and sets the phase to zero.

The BZ command is followed by real numbers in the fields corresponding to the driven axes. The number
represents the voltage to be applied to the amplifier during the initialization. When the voltage is specified
by a positive number, the initialization process ends up in the motor off (MO) state. A negative number
causes the process to end in the Servo Here (SH) state.

WARNING: This command must move the motor to find the zero commutation phase. This
movement is instantaneous and will cause the system to jerk. Larger applied voltages will cause
more severe motor jerk. The applied voltage will typically be sufficient for proper operation of the
BZ command. For systems with significant friction, this voltage may need to be increased and for
systems with very small motors, this value should be decreased. For example:

BZz-2,0,1

will drive both A and C axes to zero, will apply 2V and 1V respectively to A and C and will end up
with A in SH and C in MO.

Step F - part 2 (Systems with Hall Sensors Only). Set Zero Commutation Phase

With Hall sensors, the estimated value of the commutation phase is good to within 30°. This estimate can
be used to drive the motor but a more accurate estimate is needed for efficient motor operation. There are
3 possible methods for commutation phase initialization:

Method 1. Use the BZ command as described above.

Method 2. Drive the motor close to commutation phase of zero and then use BZ command. This method
decreases the amount of system jerk by moving the motor close to zero commutation phase before
executing the BZ command. The controller makes an estimate for the number of encoder counts between
the current position and the position of zero commutation phase. This value is stored in the operand BZn.
Using this operand the controller can be commanded to move the motor. The BZ command is then issued
as described above. For example, to initialize the A axis motor upon power or reset, the following
commands may be given:

DMC-40x0 Chapter 2 Getting Started o 23

SHA ;Enable A axis motor
PRA=-1*(_BZA) ;Move A motor close to zero commutation phase

BGA ;Begin motion on A axis
AMA ;Wait for motion to complete on A axis
BZA=-1 ;Drive motor to commutation phase zero and leave motor on

Method 3. Use the command, BC. This command uses the Hall transitions to determine the commutation
phase. Ideally, the Hall sensor transitions will be separated by exactly 60° and any deviation from 60° will
affect the accuracy of this method. If the Hall sensors are accurate, this method is recommended. The BC
command monitors the Hall sensors during a move and monitors the Hall sensors for a transition point.
When that occurs, the controller computes the commutation phase and sets it. For example, to initialize the
A axis motor upon power or reset, the following commands may be given:

SHA ;Enable A axis motor

BCA ;Enable the brushless calibration command

PRA=50000 ;Command a relative position movement on A axis

BGA ;Begin motion on A axis. When the Hall sensors detect a

;phase transition, the commutation phase iIs reset

Step 8c. Connect Step Motors

In Stepper Motor operation, the pulse output signal has a 50% duty cycle. Step motors operate open loop and do not
require encoder feedback. When a stepper is used, the auxiliary encoder for the corresponding axis is unavailable
for an external connection. If an encoder is used for position feedback, connect the encoder to the main encoder
input corresponding to that axis. The commanded position of the stepper can be interrogated with RP or TD. The
encoder position can be interrogated with TP.

If encoders are available on the stepper motor, Galil’s Stepper Position Maintenance Mode may be used for
automatic monitoring and correction of the stepper position. See Stepper Position Maintenance Mode (SPM) in
Chapter 6 Programming Motion for more information.

The frequency of the step motor pulses can be smoothed with the filter parameter, KS. The KS parameter has a
range between 0.25 and 64, where 64 implies the largest amount of smoothing. See Command Reference regarding
KS.

The DMC-40x0 profiler commands the step motor amplifier. All DMC-40x0 motion commands apply such as PR,
PA, VP, CR and JG. The acceleration, deceleration, slew speed and smoothing are also used. Since step motors run
open-loop, the PID filter does not function and the position error is not generated.

To connect step motors with the DMC-40x0 you must follow this procedure — If you have a Galil integrated stepper
driver skip Step A, the step and direction lines are already connected to the driver:

Step A. Connect step and direction signals from controller to motor amplifier

From the controller to respective signals on your step motor amplifier. (These signals are labeled STPA
and DIRA for the A-axis on the EXTERNAL DRIVER (A-D) D-Sub connector top of the controller).
Consult the documentation for connecting these signals to your step motor amplifier.

Step B. Configure DMC-40x0 for motor type using MT command. You can configure the DMC-40x0 for
active high or active low pulses. Use the command MT 2 or 2.5 for active low step motor pulses and MT -
2 or -2.5 for active high step motor pulses. See description of the MT command in the Command
Reference.

Step 9. Tune the Servo System

Adjusting the tuning parameters is required when using servo motors (standard or sinusoidal commutation). The
system compensation provides fast and accurate response and the following section suggests a simple and easy way

24 e Chapter 2 Getting Started DMC-40x0

for compensation. More advanced design methods are available with software design tools from Galil, such as the
Windows Servo Design Kit (WSDK software).

The filter has three parameters: the damping, KD; the proportional gain, KP; and the integrator, KI. The parameters
should be selected in this order.

To start, set the integrator to zero with the instruction
KI O <return> Integrator gain

and set the proportional gain to a low value, such as
KP 1 <return> Proportional gain
KD 100 <return> Derivative gain

For more damping, you can increase KD (maximum is 4095.875). Increase gradually and stop after the motor
vibrates. A vibration is noticed by audible sound or by interrogation. If you send the command

TE A <return> Tell error

a few times, and get varying responses, especially with reversing polarity, it indicates system vibration. When this
happens, simply reduce KD by about 20%.

Next you need to increase the value of KP gradually (maximum allowed is 1023.875). You can monitor the
improvement in the response with the Tell Error instruction

KP 10 <return> Proportion gain
TE A <return> Tell error
As the proportional gain is increased, the error decreases.

Again, the system may vibrate if the gain is too high. In this case, reduce KP by about 20%. Typically, KP should
not be greater than KD/4 (only when the amplifier is configured in the current mode).

Finally, to select KI, start with zero value and increase it gradually. The integrator eliminates the position error,
resulting in improved accuracy. Therefore, the response to the instruction

TE A <return>

becomes zero. As KI is increased, its effect is amplified and it may lead to vibrations. If this occurs, simply reduce
KI. Repeat tuning for the B, C and D axes.

Note: For a more detailed description of the operation of the PID filter and/or servo system theory, see Chapter 10
Theory of Operation

Design Examples

Here are a few examples for tuning and using your controller. These examples have remarks next to each command
- these remarks must not be included in the actual program.

Example 1 - System Set-up

This example assigns the system filter parameters, error limits and enables the automatic error shut-off.

Instruction Interpretation

KP10,10,10,10 Set gains for a,b,c,d (or A,B,C,D axes)
KP*=10 Alternate method for setting gain on all axes
KPA=10 Method for setting only A (or X) axis gain
KPX=10 Method for setting only X (or A) axis gain
KP, 20 Set B axis gain only

DMC-40x0 Chapter 2 Getting Started o 25

Instruction Interpretation

OE 1,1,1,1,1,1,1,1 Enable automatic Off on Error function for all axes
ER*=1000 Set error limit for all axes to 1000 counts
KpP10,10,10,10,10,10,10,10 Set gains for a,b,c,d,e,f,g,and h axes

KP*=10 Alternate method for setting gain on all axes
KPA=10 Alternate method for setting A axis gain

KP,,10 Set C axis gain only

KPD=10 Alternate method for setting D axis gain

KPH=10 Alternate method for setting H axis gain

Example 2 - Profiled Move

Rotate the A axis a distance of 10,000 counts at a slew speed of 20,000 counts/sec and an acceleration and
deceleration rates of 100,000 counts/s2. In this example, the motor turns and stops:

Instruction Interpretation
PR1000 Distance
SP20000 Speed

DC 100000 Deceleration
AC 100000 Acceleration
BG A Start Motion

Example 3 - Multiple Axes

Objective: Move the four axes independently.
Instruction Interpretation
PR 500,1000,600,-400 Distances of A,B,C,D
SP 10000,12000,20000,10000 Slew speeds of A,B,C,D
AC 10000,10000,10000,10000 Accelerations of A,B,C,D
DC 80000,40000,30000,50000 Decelerations of A,B,C,D
BG AC Start A and C motion
BG BD Start B and D motion

Example 4 - Independent Moves

The motion parameters may be specified independently as illustrated below.

Instruction Interpretation

PR ,300,-600 Distances of B and C
SP ,2000 Slew speed of B

DC ,80000 Deceleration of B
AC ,100000 Acceleration of B
AC ,,100000 Acceleration of C
DC, ,150000 Deceleration of C

BG C Start C motion

BG B Start B motion

Example 5 - Position Interrogation

The position of the four axes may be interrogated with the instruction, TP.

Instruction Interpretation
TP Tell position all four axes
TP A Tell position — A axis only

26 e Chapter 2 Getting Started DMC-40x0

TP B Tell position — B axis only
TP C Tell position — C axis only
TP D Tell position — D axis only

The position error, which is the difference between the commanded position and the actual position can be
interrogated with the instruction TE.

Instruction Interpretation

TE Tell error — all axes

TE A Tell error — A axis only
TE B Tell error — B axis only
TE C Tell error — C axis only
TE D Tell error — D axis only

Example 6 - Absolute Position

Objective: Command motion by specifying the absolute position.

Instruction Interpretation

DP 0,2000 Define the current positions of A,B as 0 and 2000
PA 7000,4000 Sets the desired absolute positions

BG A Start A motion

BG B Start B motion

After both motions are complete, the A and B axes can be command back to zero:
PA 0,0 Move to 0,0

BG AB Start both motions

Example 7 - Velocity Control

Objective: Drive the A and B motors at specified speeds.

Instruction Interpretation

JG 10000,-20000 Set Jog Speeds and Directions
AC 100000, 40000 Set accelerations

DC 50000,50000 Set decelerations

BG AB Start motion

after a few seconds, command:

JG -40000 New A speed and Direction
TV A Returns A speed
and then
JG ,20000 New B speed
TV B Returns B speed

These cause velocity changes including direction reversal. The motion can be stopped with the instruction
ST Stop

Example 8 - Operation Under Torque Limit

The magnitude of the motor command may be limited independently by the instruction TL.

Instruction Interpretation
TL 0.2 Set output limit of A axis to 0.2 volts
JG 10000 Set A speed

DMC-40x0 Chapter 2 Getting Started o 27

BG A Start A motion

In this example, the A motor will probably not move since the output signal will not be sufficient to overcome the
friction. If the motion starts, it can be stopped easily by a touch of a finger.

Increase the torque level gradually by instructions such as

Instruction Interpretation
TL 1.0 Increase torque limit to 1 volt.
TL 9.998 Increase torque limit to maximum, 9.998 volts.

The maximum level of 9.998 volts provides the full output torque.

Example 9 - Interrogation

The values of the parameters may be interrogated. Some examples ...

Instruction Interpretation

KP? Return gain of A axis

KP ,,? Return gain of C axis.

KP ?,?,?,? Return gains of all axes.

Many other parameters such as KI, KD, FA, can also be interrogated. The command reference denotes all
commands which can be interrogated.

Example 10 - Operation in the Buffer Mode

The instructions may be buffered before execution as shown below.
Instruction Interpretation

PR 600000 Distance

SP 10000 Speed

WT 10000 Wait 10000 milliseconds before reading the next instruction
BG A Start the motion

Example 11 - Using the On-Board Editor

Motion programs may be edited and stored in the controller’s on-board memory. When the command, ED is given
from the Galil DOS terminal (such as DMCTERM), the controllers editor will be started.

The instruction
ED Edit mode

moves the operation to the editor mode where the program may be written and edited. The editor provides the line
number. For example, in response to the first ED command, the first line is zero.

Line# Instruction Interpretation
000 #A Define label
001 PR 700 Distance

002 SP 2000 Speed

003 BGA Start A motion
004 EN End program

To exit the editor mode, input <cntrl>Q. The program may be executed with the command.
XQ #A Start the program running

28 e Chapter 2 Getting Started DMC-40x0

If the ED command is issued from the Galil Windows terminal software (such as SmartTERM), the software will
open a Windows based editor. From this editor a program can be entered, edited, downloaded and uploaded to the
controller.

Example 12 - Motion Programs with Loops

Motion programs may include conditional jumps as shown below.

Instruction Interpretation

#A Label

DP O Define current position as zero
V1=1000 Set initial value of V1
#LOOP Label for loop

PA V1 Move A motor V1 counts

BG A Start A motion

AM A After A motion is complete
WT 500 Wait 500 ms

T A Tell position A
V1=V1+1000 Increase the value of V1
JP #LOOP,V1<10001 Repeat if V1<10001

EN End

After the above program is entered, quit the Editor Mode, <cntrl>Q. To start the motion, command:
XQ #A Execute Program #A

Example 13 - Motion Programs with Trippoints

The motion programs may include trippoints as shown below.

Instruction Interpretation

#B Label

DP 0,0 Define initial positions
PR 30000,60000 Set targets

SP 5000,5000 Set speeds

BGA Start A motion

AD 4000 Wait until A moved 4000
BGB Start B motion

AP 6000 Wait until position A=6000
SP 2000,50000 Change speeds

AP ,50000 Wait until position B=50000
SP ,10000 Change speed of B

EN End program

To start the program, command:
XQ #B Execute Program #B

Example 14 - Control Variables

Objective: To show how control variables may be utilized.

Instruction Interpretation
#A;DPO Label; Define current position as zero
PR 4000 Initial position

DMC-40x0 Chapter 2 Getting Started o 29

SP 2000 Set speed

BGA Move A

AMA Wait until move is complete
WT 500 Wait 500 ms

#B

V1 = _TPA Determine distance to zero
PR -V1/2 Command A move 1/2 the distance
BGA Start A motion

AMA After A moved

WT 500 Wait 500 ms

V1= Report the value of Vi1

JP #C, V1=0 Exit if position=0

JP #B Repeat otherwise

#C Label #C

EN End of Program

To start the program, command
XQ #A Execute Program #A

This program moves A to an initial position of 1000 and returns it to zero on increments of half the distance. Note,
_TPA is an internal variable which returns the value of the A position. Internal variables may be created by
preceding a DMC-40x0 instruction with an underscore, .

Example 15 - Linear Interpolation

Objective: Move A,B,C motors distance of 7000,3000,6000, respectively, along linear trajectory. Namely, motors
start and stop together.

Instruction Interpretation

LM ABC Specify linear interpolation axes

L1 7000,3000,6000 Relative distances for linear interpolation
LE Linear End

VS 6000 Vector speed

VA 20000 Vector acceleration

VD 20000 Vector deceleration

BGS Start motion

Example 16 - Circular Interpolation

Objective: Move the AB axes in circular mode to form the path shown on Fig. 2-8. Note that the vector motion
starts at a local position (0,0) which is defined at the beginning of any vector motion sequence. See application
programming for further information.

Instruction Interpretation

VM AB Select AB axes for circular interpolation
VP -4000,0 Linear segment

CR 2000,270,-180 Circular segment

VP 0,4000 Linear segment

CR 2000,90,-180 Circular segment

VS 1000 Vector speed

VA 50000 Vector acceleration

VD 50000 Vector deceleration

VE End vector sequence

30 e Chapter 2 Getting Started DMC-40x0

BGS

(-4000,4000)

Start motion

(0,4000)

R=2000

(-4000,0)

(0,0) local zero

Figure 2-7 Motion Path for Circular Interpolation Example

DMC-40x0

Chapter 2 Getting Started o 31

Chapter 3 Connecting Hardware

Overview

The DMC-40x0 provides opto-isolated digital inputs for forward limit, reverse limit, home, and abort signals.
The controller also has 8 opto-isolated, uncommitted inputs (for general use) as well as 8 high power opto-
isolated outputs and 8 analog inputs configured for voltages between +/- 10 volts.

4080| Controllers with 5 or more axes have an additional 8 opto-isolated inputs and an additional 8 high
power opto-isolated outputs.

This chapter describes the inputs and outputs and their proper connection.

Using Optoisolated Inputs

Limit Switch Input

The forward limit switch (FLSx) inhibits motion in the forward direction immediately upon activation of the switch.
The reverse limit switch (RLSx) inhibits motion in the reverse direction immediately upon activation of the switch.
If a limit switch is activated during motion, the controller will make a decelerated stop using the deceleration rate
previously set with the SD command. The motor will remain on (in a servo state) after the limit switch has been
activated and will hold motor position.

When a forward or reverse limit switch is activated, the current application program that is running in thread zero
will be interrupted and the controller will automatically jump to the #LIMSWI subroutine if one exists. This is a
subroutine which the user can include in any motion control program and is useful for executing specific instructions
upon activation of a limit switch. Automatic Subroutines for Monitoring Conditions are discussed in Chapter 7
Application Programming.

After a limit switch has been activated, further motion in the direction of the limit switch will not be possible until

the logic state of the switch returns back to an inactive state. This usually involves physically opening the tripped

switch. Any attempt at further motion before the logic state has been reset will result in the following error: “022 -
Begin not possible due to limit switch” error.

The operands, LFx and LRx, contain the state of the forward and reverse limit switches, respectively (x represents
the axis, X, Y, Z, W etc.). The value of the operand is either a ‘0’ or ‘1’ corresponding to the logic state of the limit
switch. Using a terminal program, the state of a limit switch can be printed to the screen with the command,

MG _LFx or MG_LRx. This prints the value of the limit switch operands for the “x” axis. The logic state of the
limit switches can also be interrogated with the TS command. For more details on TS see the Command Reference.

32 e Chapter 3 Connecting Hardware DMC-40x0

Home Switch Input

Homing inputs are designed to provide mechanical reference points for a motion control application. A transition in
the state of a Home input alerts the controller that a particular reference point has been reached by a moving part in
the motion control system. A reference point can be a point in space or an encoder index pulse.

The Home input detects any transition in the state of the switch and toggles between logic states 0 and 1 at every
transition. A transition in the logic state of the Home input will cause the controller to execute a homing routine
specified by the user.

There are three homing routines supported by the DMC-40x0: Find Edge (FE), Find Index (FI), and Standard Home
(HM).

The Find Edge routine is initiated by the command sequence: FEX <return>, BGX <return>. The Find Edge routine
will cause the motor to accelerate, and then slew at constant speed until a transition is detected in the logic state of
the Home input. The direction of the FE motion is dependent on the state of the home switch. High level causes
forward motion. The motor will then decelerate to a stop. The acceleration rate, deceleration rate and slew speed
are specified by the user, prior to the movement, using the commands AC, DC, and SP. When using the FE
command, it is recommended that a high deceleration value be used so the motor will decelerate rapidly after
sensing the Home switch.

The Find Index routine is initiated by the command sequence: FIX <return>, BGX <return>. Find Index will cause
the motor to accelerate to the user-defined slew speed (SP) at a rate specified by the user with the AC command and
slew until the controller senses a change in the index pulse signal from low to high. The motor then decelerates to a
stop at the rate previously specified by the user with the DC command and then moves back to the index pulse and
speed HV. Although Find Index is an option for homing, it is not dependent upon a transition in the logic state of
the Home input, but instead is dependent upon a transition in the level of the index pulse signal.

The Standard Homing routine is initiated by the sequence of commands HMX <return>, BGX <return>. Standard
Homing is a combination of Find Edge and Find Index homing. Initiating the standard homing routine will cause
the motor to slew until a transition is detected in the logic state of the Home input. The motor will accelerate at the
rate specified by the command, AC, up to the slew speed. After detecting the transition in the logic state on the
Home Input, the motor will decelerate to a stop at the rate specified by the command, DC. After the motor has
decelerated to a stop, it switches direction and approaches the transition point at the speed of HV counts/sec. When
the logic state changes again, the motor moves forward (in the direction of increasing encoder count) at the same
speed, until the controller senses the index pulse. After detection, it decelerates to a stop, moves back to the index,
and defines this position as 0. The logic state of the Home input can be interrogated with the command MG_HMX.
This command returns a 0 or 1 if the logic state is low or high, respectively. The state of the Home input can also be
interrogated indirectly with the TS command.

For examples and further information about Homing, see command HM, FI, FE of the Command Reference and the
section entitled Homing in the Programming Motion Section of this manual.

Abort Input

The function of the Abort input is to immediately stop the controller upon transition of the logic state.

NOTE: The response of the abort input is significantly different from the response of an activated limit switch.
When the abort input is activated, the controller stops generating motion commands immediately, whereas the limit
switch response causes the controller to make a decelerated stop.

NOTE: The effect of an Abort input is dependent on the state of the off-on-error function for each axis. If the Off-
On-Error function is enabled for any given axis, the motor for that axis will be turned off when the abort signal is
generated. This could cause the motor to ‘coast’ to a stop since it is no longer under servo control. If the Off-On-
Error function is disabled, the motor will decelerate to a stop as fast as mechanically possible and the motor will
remain in a servo state.

All motion programs that are currently running are terminated when a transition in the Abort input is detected. This
can be configured with the CN command. For information see the Command Reference, OE and CN.

DMC-40x0 Chapter 3 Connecting Hardware e 33

ELO (Electronic Lock-Out) Input

Used in conjunction with Galil amplifiers, this input allows the user the shutdown the amplifier at a hardware level.
For more detailed information on how specific Galil amplifiers behave when the ELO is triggered, see Integrated
Amplifiers and Drivers in the Appendices.

Reset Input

When this input is driven low, the controller will reset. This is the same as pressing the “RESET” button on the
controller.

Uncommitted Digital Inputs

The DMC-40x0 has 8 opto-isolated inputs. These inputs can be read individually using the function @ IN[x] where
x specifies the input number (1 thru 8). These inputs are uncommitted and can allow the user to create conditional
statements related to events external to the controller. For example, the user may wish to have the x-axis motor
move 1000 counts in the positive direction when the logic state of DI1 goes high.

This can be accomplished by connecting a voltage in the range of +5V to +28V into INCOM of the input circuitry
from a separate power supply.

4080| Controllers with more than 4 axes have an additional 8 general opto-isolated inputs (inputs 9-16). The
INCOM for these inputs is found on the I/O (E-H) D-Sub connector.

An additional 32 I/O are provided at 3.3V (5V option) through the extended I/O. These are not opto-
isolated.

NOTE: INCOM and LSCOM for Inputs 9-16 and Limit and Home Switches for axes 5-8 are found on
the connectors for the E-H axes. These are NOT the same INCOM and LSCOM for axes 1-4.

DI9-DI16 INCOM (I/O (E-H) D-Sub connectors)
FLSE,RLSE,HOME LSCOM (I/0O (E-H) D-Sub connector)
FLSF,RLSF,HOMF

FLSG,RLSG,HOMG

FLSH,RLSH,HOMH

Wiring the Optoisolated Inputs

Electrical Specifications
Input Common (INCOM) Max Voltage 28 VDC
Limit Common (LSCOM) Max Voltage 28 VDC

Minimum Current to turn on Inputs 1 mA

Bi-Directional Capability

All inputs can be used as active high or low - If you are using an isolated power supply you can connect the positive
voltage of the supply (+Vs) to INCOM or supply the isolated ground to INCOM. Connecting +Vs to INCOM will
configure the inputs for active low. Connecting the isolated ground to INCOM will configure the inputs for active
high. If there is not an isolated available, the Galil 5V or 12V and GND may be used. It is recommended to use an
isolated supply for the optoisolated inputs.

The optoisolated inputs are configured into groups. For example, the general inputs, DI1-DI8 (inputs 1-8), the
ABRT (abort) input and RST (reset) and ELO (electronic lock-out) inputs are one group. Figure 3.1 illustrates the
internal circuitry. The INCOM signal is a common connection for all of the inputs in each group.

34 e Chapter 3 Connecting Hardware DMC-40x0

4080

The ELO, ABRT and RST pins are found on the I/O (A-D) D-Sub and are duplicated on the I/O (E-H)
D-Sub. ILe. There is only one ELO, ABRT and RST input for an 8 axis controller. The common is the
INCOM found on the I/O (A-D) D-Sub connector.

The optoisolated inputs are connected in the following groups:

Group (Controllers with 1- 4 Axes) Common Signal

DI1-DI8, ABRT, RST, ELO INCOM (I/O (A-D) D-Sub Connectors)
FLSA,RLSA,LHOMA LSCOM (I/0 (A-D) D-Sub Connectors)
FLSB,RLSB,HOMB

FLSC.,RLSC,HOMC

FLSD,RLSD,HOMD

Group (Controllers with 5-8 Axes)

DI1-DI8, ABRT, RST, ELO INCOM (I/O (A-D) D-Sub Connectors)

FLSA,RLSA,HOMA
FLSB,RLSB,HOMB
FLSC,RLSC,HOMC
FLSD,RLSD,HOMD

LSCOM (I/0O (A-D) D-Sub Connectors)

DI9-DI16

INCOM (/O (E-H) D-Sub Connectors)

FLSE,RLSE,HOME
FLSF,RLSF,HOMF

FLSG,RLSG,HOMG
FLSH,RLSH,HOMH

LSCOM (I/0 (E-H) D-Sub Connectors)

Table 3-1: INCOM and LSCOM information

DMC-40x0

Chapter 3 Connecting Hardware e 35

Lscom o000l N

Additional Limit

RPACK Switches (Dependent on
Number of Axes)

FLSX RLSX HOMEX FLSY RLSY HOMY

INCOM
2.2kQ
RPACK
N
N '\\ '\\ '\\ '\\ '\\ '\\ '\\ '\\
\'\ \\ \\ \\ \\ \\ \\ \\ \\
DI1 DI2 DI3 D14 DIS DI6 DI7 DI8 ABRT

(XLATCH) (YLATCH) (ZLATCH) (WLATCH)

Figure 3-1: The Optoisolated Inputs.

Using an Isolated Power Supply

To take full advantage of opto-isolation, an isolated power supply should be used to provide the voltage at the input
common connection. When using an isolated power supply, do not connect the ground of the isolated power to the
ground of the controller. A power supply in the voltage range between 5 to 28 Volts may be applied directly (see
Figure 3-2). For voltages greater than 28 Volts, a resistor, R, is needed in series with the input such that:

1 mA <V supply/(R + 2.2KQ) < 11 mA

36 e Chapter 3 Connecting Hardware DMC-40x0

External Resistor Needed for External Resistor Needed for

Voltages > 28V LSCOM Voltages > 28V LSCOM
2.2K 2.2K
+ \
— N e '\\
| +
N
¥ \\
FLSX 5 FLSX
Configuration to source current at the Configuration to sink current at the
LSCOM terminal and sink current at LSCOM terminal and source current at
switch inputs switch inputs

Figure 3-2. Connecting a single Limit or Home Switch to an Isolated Supply. This diagram only shows the connection for the
forward limit switch of the X axis.

Bypassing the Opto-Isolation:

If no isolation is needed, the internal 5 Volt supply may be used to power the switches. This can be done by
connecting LSCOM or INCOM to 5V.

To close the circuit, wire the desired input to any ground (GND) pin on the controller.

TTL Inputs

The Auxiliary Encoder Inputs

The auxiliary encoder inputs can be used for general use. For each axis, the controller has one auxiliary encoder and
each auxiliary encoder consists of two inputs, channel A and channel B. The auxiliary encoder inputs are mapped to
the inputs 81-96.

Each input from the auxiliary encoder is a differential line receiver and can accept voltage levels between +/- 12
volts. The inputs have been configured to accept TTL level signals. To connect TTL signals, simply connect the
signal to the + input and leave the - input disconnected. For other signal levels, the - input should be connected to a
voltage that is ¥ of the full voltage range (for example, connect the - input to 6 volts if the signal is a 0 - 12 volt
logic).

Example:

A DMC-4010 has one auxiliary encoder. This encoder has two inputs (channel A and channel B). Channel A input
is mapped to input 81 and Channel B input is mapped to input 82. To use this input for 2 TTL signals, the first
signal will be connected to AA+ and the second to AB+. AA- and AB- will be left unconnected. To access this
input, use the function @IN[81] and @IN[82].

NOTE: The auxiliary encoder inputs are not available for any axis that is configured for stepper motor.

DMC-40x0 Chapter 3 Connecting Hardware e 37

High Power Opto-Isolated Outputs

The DMC-40x0 has different interconnect module options, this section will describe the 500mA optically isolated
outputs that are used on the ICM-42x00.

Electrical Specifications

Output Common Max Voltage 30 VDC
Output Common Min Voltage 5VDC
Max Drive Current per Output 0.5 A (not to exceed 3A for all 8 outputs)

Wiring the Opto-Isolated Outputs

The ICM-42x00 module allows for opto-isolation on all of the digital inputs and outputs. The digital outputs are
optically isolated and are capable of sourcing up to 0.5 A per pin with a 3 A limit for the group of 8 outputs. The
outputs are configured for hi-side drive only. The supply voltage must be connected to output supply voltage
(OPWR), and the supply return must be connected to output return (ORET).

Figure 3-3 shows the manner in which the load should be connected. The output will be at the voltage that is
supplied to the OPWR pin. Up to 30 VDC may be supplied to OPWR.

|§ CPYWR (+)
9
Load
7
CRET (-

Figure 3-3 ICM-42x00 General-Purpose Digital Output Opto-Isolation

4080| For controllers with 5-8 axes, outputs 9-16 are located on the I/0O (E-H) D-Sub connector. The OPWR and
ORET for these outputs are also found on the I/O (E-H) D-Sub connector. Connections to the OPWR and
ORET on the I/O (E-H) as described above are required for operation of outputs 9-16.

38 e Chapter 3 Connecting Hardware DMC-40x0

Analog Inputs

The DMC-40x0 has eight analog inputs configured for the range between -10V and 10V. The inputs are decoded by
a 12-bit A/D decoder giving a voltage resolution of approximately .005V. A 16-bit ADC is available as an option.
The impedance of these inputs is 10 kQ2. The analog inputs are specified as AN[x] where x is a number 1 thru 8.

AQ settings

The analog inputs can be set to a range of +/-10V, +/-5V, 0-5V and 0-10V. See the AQ command in the command
reference for more information.

TTL Outputs

Output Compare

The output compare signal is TTL and is available on the I/O (A-D) D-Sub connector as CMP. Output compare is
controlled by the position of any of the main encoders on the controller. The output can be programmed to produce
an active low pulse (250 nsec) based on an incremental encoder value or to activate once when an axis position has
been passed. For further information, see the command OC in the Command Reference.

4080' For controllers with 5-8 axes, a second output compare signal is available on the I/O (E-H) D-Sub
connector.

Error Output

The controller provides a TTL signal, ERR, to indicate a controller error condition. When an error condition occurs,
the ERR signal will go low and the controller LED will go on. An error occurs because of one of the following
conditions:

1. At least one axis has a position error greater than the error limit. The error limit is set by using the
command ER.

2. The reset line on the controller is held low or is being affected by noise.
There is a failure on the controller and the processor is resetting itself.
4. There is a failure with the output IC which drives the error signal.
The ERR signal is found on the I/O (A-D) D-Sub connector.
@ For controllers with 5-8 axes, the ERR signal is duplicated on the I/O (E-H) D-Sub connector.

DMC-40x0 Chapter 3 Connecting Hardware e 39

Extended 1/O of the DMC-40x0 Controller

The DMC-40x0 controller offers 32 extended TTL 1/O points which can be configured as inputs or outputs in 8 bit
increments. Configuration is accomplished with command CO — see Extended I/O of the DMC-40x0 Controller
The I/O points are accessed through the 44 pin D-Sub connector labeled EXTENDED I/O. See the appendix for a
complete pin out of CMB-41012 Extended I/O 44 pin D-Sub Connector.

Electrical Specifications (3.3V - Standard)

Inputs
Max Input Voltage 3.4VDC
Guarantee High Voltage 2.0VDC
Guarantee Low Voltage 0.8 VDC

Inputs are internally pulled up to 3.3V through a 4.7kQ2 resistor

Outputs
Sink/Source 4mA per output

Electrical Specifications (5V — Option)

Inputs
Max Input Voltage 5.25 VDC
Guarantee High Voltage 2.0 vDC
Guarantee Low Voltage 0.8 VDC

Inputs are internally pulled up to 5V through a 4.7kQ resistor

Outputs
Sink/Source 20mA

40 e Chapter 3 Connecting Hardware DMC-40x0

Amplifier Interface

Electrical Specifications

Max Amplifier Enable Voltage 24V
Max Amplifier Enable Current @24V sink/source 25 mA
Motor Command Output Impedance 500 Q

Overview

The DMC-40x0 command voltage ranges between +/-10V and is output on the motor command line - MCMn
(where n is A-H). This signal, along with GND, provides the input to the motor amplifiers. The amplifiers must be
sized to drive the motors and load. For best performance, the amplifiers should be configured for a torque (current)
mode of operation with no additional compensation. The gain should be set such that a 10 volt input results in the
maximum required current.

Note: The DMC-40x0 controller has an option for differential motor command outputs. For more information
contact Galil.

The DMC-40x0 also provides an amplifier enable signal - AENn (where n is A-H). This signal changes under the
following conditions: the motor-off command, MO, is given, the watchdog timer activates, or the OE command
(Enable Off-On-Error) is set and the position error exceeds the error limit or a limit switch is reached (see OE
command in the Command Reference for more information).

For all versions of the ICM-42x00, the standard configuration of the amplifier enable signal is 5V active high amp
enable (HAEN) sinking. In other words, the AEN signal will be high when the controller expects the amplifier to be
enabled. The polarity and the amplitude can be changed by configuring the Amplifier Enable Circuit on the ICM-
42x00.

If your amplifier requires a different configuration than the default 5V HAEN sinking it is highly
recommended that the DMC-40x0 is ordered with the desired configuration. See the DMC-40x0 ordering
information in the catalog (http://www.galilmc.com/catalog/cat40x0.pdf) or contact Galil for more information on
ordering different configurations.

Notel: Many amplifiers designate the enable input as ‘inhibit’.

ICM-42000 and ICM-42100 Amplifier Enable Circuit

This section describes how to configure the ICM-42000 and ICM-42100 for different Amplifier Enable
configurations. It is advised that the user order the DMC-40x0 with the proper Amplifier enable configuration.

The ICM-42000 and ICM-42100 gives the user a broad range of options with regards to the voltage levels present on
the enable signal. The user can choose between High-Amp-Enable (HAEN), Low-Amp-Enable (LAEN), 5V logic,
12V logic, external voltage supplies up to 24V, sinking, or sourcing. Tables 3-2 and 3-3 found below illustrate the
settings for jumpers, resistor packs, and the socketed optocoupler IC. Refer to Figures 3-4 and 3-5 for precise
physical locations of all components. Note that the resistor pack located at RP2 may be reversed to change the
active state of the amplifier enable output. However, the polarity of RP6 must not be changed; a different resistor
value may be needed to limit the current to 6 mA. The default value for RP6 is 820 ohms, which works at 5V.
When using 24 V, RP6 should be replaced with a 4.7 kQ resistor pack.

NOTE: For detailed step-by-step instructions on changing the Amplifier Enable configuration on the ICM-42000 or
ICM-42100 see the Configuring the Amplifier Enable Circuit section in the Appendices.

DMC-40x0 Chapter 3 Connecting Hardware e 41

Pin 1|
of socket

RP2 (470 Ohm)

PIN 1

Amplifier Enable Circuit
Sinking Output Configuration
(Pin 1 of LTV8441 in Pin 2 of Socket U4)

Socket U4

i

/

[

TTL level Amp
Enable signal

Pin1

a
4

Y

from controller
(SH = 5V, MO = 0V)

i

=

LTV8441

Amp Enable Output to Drive

(AENN)
RP6 (820 Ohm) 83z¢e
——<¥%0 JP1
Y goEE
= GHoHeHSl AECOM1
il
>
% ; % ; JP2
Blaiye)
jll AECOM2

Figure 3-4: Amplifier Enable Circuit Sinking Output Configuration

Sinking Configuration (pinl of LTV8441 chip in pin2 of socket U4)

RP2
Logic State JP1 JP2 (square pin next to RP2 label is 5V)
5V, HAEN (Default Configuration) 5V - AECOM1 GND - AECOM2 Dot on R-pack next to RP2 label
5V, LAEN 5V - AECOMI1 GND - AECOM2 Dot on R-pack opposite RP2 label

12V, HAEN

+12V — AECOM1

GND - AECOM2

Dot on R-pack next to RP2 label

12V, LAEN

+12V - AECOM1

GND - AECOM2

Dot on R-pack opposite RP2 label

Isolated 24V, HAEN

AECI - AECOM1

AEC2 - AECOM2

Dot on R-pack next to RP2 label

Isolated 24V, LAEN

AECI - AECOM1

AEC2 - AECOM2

Dot on R-pack opposite RP2 label

For 24V isolated enable, tie +24V of external power supply to AECI at the D-sub, tie common return to AEC2. Replace
RP6 with a 4.7 kQ resistor pack. For Axes A-D, AEC1 and AEC2 are located on the EXTERNAL DRIVER (A-D) D-Sub
connector. For Axes E-H, AEC1 and AEC2 are located on the EXTERNAL DRIVER (E-H) D-Sub connector.

Note: AEC1 and AEC?2 for axes A-D are NOT connected to AEC1 and AEC2 for axes E-H.

Table 3-2: Sinking Configuration

42 e Chapter 3 Connecting Hardware

DMC-40x0

TTL level Amp
Enable signal

from controller

(SH =5V, MO = 0V)

RP2 (470 Ohm)

PIN 1

5V or GND

Amplifier Enable Circuit
Sourcing Output Configuration
(Pin 1 of LTV8441 in Pin 1 of Socket U4)

Sor\:ket U/4

e

Pin1
of socket

l_[Pin1

=

LTV8441

[l

ez 88
0P ¥ < Jp2
= [CieiE)E)]
]_I AECOM2
Amp Enable Output to Drive
(AENN)
2
© JP1
@]
= o AECOM1
]

Figure 3-5: Amplifier Enable Circuit Sourcing Output Configuration

Sourcing Configuration (pinl of LTV8441 chip in pinl of socket U4)

RP2
Logic State JP1 JP2 (square pin next to RP2 label is 5V)
5V, HAEN GND - AECOM1 5V — AECOM2 Dot on R-pack opposite RP2 label
5V, LAEN GND — AECOM1 5V - AECOM2 Dot on R-pack next to RP2 label
12V, HAEN GND - AECOM1 +12V — AECOM2 Dot on R-pack opposite RP2 label
12V, LAEN GND - AECOM1 +12V — AECOM2 Dot on R-pack next to RP2 label

Isolated 24V, HAEN

AEC1 - AECOM1

AEC2 - AECOM2

Dot on R-pack opposite RP2 label

Isolated 24V, LAEN

AECI - AECOM1

AEC2 - AECOM2

Dot on R-pack next to RP2 label

For 24V isolated enable, tie +24V of external power supply to AEC2 at the D-sub, tie common return to AEC1. Replace
RP6 with a 4.7 kQ resistor pack. For Axes A-D, AEC1 and AEC2 are located on the EXTERNAL DRIVER (A-D) D-Sub
connector. For Axes E-H, AEC1 and AEC2 are located on the EXTERNAL DRIVER (E-H) D-Sub connector.

Note: AEC1 and AEC2 for axes A-D are NOT connected to AEC1 and AEC2 for axes E-H.

Table3-3: Sourcing Configuration

DMC-40x0

Chapter 3 Connecting Hardware e 43

ICM-42200 Amplifier Enable Circuit

This section describes how to configure the ICM-42200 for different Amplifier Enable outputs. The ICM-42200 is
designed to be used with external amplifiers. As a result, the amplifier enable circuit for each axis is individually
configurable through jumper settings. The user can choose between High-Amp-Enable (HAEN), Low-Amp-Enable
(LAEN), 5V logic, 12V logic, external voltage supplies up to 24V, sinking, or sourcing. Every different
configuration is described below with jumper settings and a schematic of the circuit.

45V
5| 0%
é DOO
5y 028
[o 2]
HIGH AMP ENABLE ggg = AEN TO DRIVE
SINKING 209 | . ¥ = (PINZ)
SHi = 5V ‘&
MOn = 8V
+12V
c;; ogg
<| 2% 10K
+12V 203 7
o_o0
HIGH AMP ENABLE ggg = AEN TO DRIVE
SINKING 225 |1 . ¥ = (] PN
SHin = 5V ‘&
MOn = oV
AMP ENABLE POWER
(PIN 20)
AR
% ogo
OOO 45V 10K
ISOLATED SUPPLY 02
HIGH AMP ENABLE ggg - AEN TO DRIVE
SINKING 238 |1 I G P2
SHn =5V
AMP ENABLE RETURN
MOn = ov (PIN 11)

O o

44 ¢ Chapter 3 Connecting Hardware DMC-40x0

+5V

<< OO
21 896
<] oo 10K
+5V %0
LOW AMP ENABLE ggg CPUAEN »——oTf 7 o AEN TO DRIVE
SINKING 528 | - ¥~ PN
wor-ov <L <
v
<< 00
w o _oO
; [e]
12V NIE o
+ OOO
LOW AMP ENABLE 052 CPUAEN =——f . AEN TO DRIVE
SINKING 598 |1 - = (] (FIN2)
nE S
AMP ENABLE POWER
(PIN 20}
< o?°
2| o0
059 10K
ISOLATED SUPPLY 526
LOW AMP ENABLE 69 CPUAEN =——5) = AENTO DRIVE
SINKING 228 | - ¥~ (N2
MOn = oV
AMP ENABLE RETURN
(PIN 11)

DMC-40x0 Chapter 3 Connecting Hardware e 45

5| 0%
5 ggg +5V
+5V 050 CPU AEN -—32 ~ (]
HIGH AMP ENABLE ggg SHn =5V * AEN TO DRIVE
SOURCING 020 |1 MOn = 0v 5 (PIN2)
10K
<C o
2| 928 a2y
< OgO
+12V 508 CPU AEN -—:Sllz ~ C
HIGH AMP ENABLE o990 SHn =5V * AEN TO DRIVE
SOURCING 020 |1 MOn = 0V 5 (PIN)
10K
<[o0 AMP ENABLE POWER
gj 802 (PIN 20)
< ogo
ISOLATED SUPPLY ggg CPU AEN -—SZ ~ (—
HIGH AMP ENABLE 69 SHn =5V ’ = AEN TO DRIVE
SOURCING 020 |1 MOn - oV 5 (PIN2)
10K
AMP ENABLE RETURN
(PIN 11)
123456
46 e Chapter 3 Connecting Hardware DMC-40x0

<t 0O
:33 ggg +5V +5Y
+5V 090
o>o =
LOW AMP ENABLE ggg CPU AEN -—32 C— ’ AEN TO DRIVE
SOURCING 0% |1 (PIN2)
SHn =5V
MOn = 0V 10K
| 0%
g o go +5V +12V
(o] oO
+12V ggg SZ ~ C_
LOW AMP ENABLE ©50 CPUAEN =—- . AEN TO DRIVE
SOURCING 0%0 |1 (PIN2)
SHn =5V
MOn = 0V 10K
< 00 AMP ENABLE POWER
g g og 5V (PIN 20)
< o oO
o
ISOLATED SUPPLY 823 } ~ C—
LOW AMP ENABLE 050 CPUAEN =—— | . = AEN TO DRIVE
SOURCING 020 |1 (PIN2)
SHn =5V
MOn = 0V 10K
AMP ENABLE RETURN
(PIN 11)
123456
DMC-40x0 Chapter 3 Connecting Hardware e 47

Chapter 4 Software Tools and
Communication

Introduction

The default configuration DMC-40x0 has two RS232 ports and 1 Ethernet port. The main RS-232 port is the data
set and can be configured through the jumpers on the top of the controller. The auxiliary RS-232 port is the data
term and can be configured with the software command CC. The auxiliary RS-232 port can be configured either for
daisy chain operation or as a general port. This configuration can be saved using the Burn (BN) instruction. The
RS232 ports also have a clock synchronizing line that allows synchronization of motion on more than one controller.

Galil software is available for PC computers running Microsoft Windows® to communicate with the DMC-40x0
controller. Standard Galil communications software utilities are available for Windows operating systems, which
includes SmartTERM and WSDK. These software packages are developed to operate under Windows XP, and
include all the necessary drivers to communicate. In addition, Galil offers software development tools (CToolkit
and ActiveX Toolkit) to allow users to create their own application interfaces using programming environments
such as C, C++, Visual Basic, and LabVIEW.

Galil also offers some basic software drivers and utilities for non-Windows environments such as DOS, Linux, and
QNX.

The following sections in this chapter are a description of the communications protocol, and a brief introduction to
the software tools and communication techniques used by Galil. At the application level, SmartTERM and WSDK
are the basic programs that the majority of users will need to communicate with the controller, to perform basic
setup, and to develop application code ((DMC programs) that is downloaded to the controller. At the Galil API level,
Galil provides software tools (ActiveX and API functions) for advanced users, who wish to develop their own
custom application programs to communicate to the controller. Custom application programs can utilize API
function calls directly to our DLL’s, or use our ActiveX COM objects. The ActiveX controls can simplify
programming and offer additional functionality over using the communication DLL’s directly. At the driver level,
we provide fundamental hardware interface information for users who desire to create their own drivers.

RS232 Ports

The RS232 pin-out description for the main and auxiliary port is given below. Note that the auxiliary port is
essentially the same as the main port except inputs and outputs are reversed. The DMC-40x0 may also be
configured by the factory for RS422. These pin-outs are also listed below.

NOTE: If you are connecting the RS232 auxiliary port to a terminal or any device which is a DATASET, it is
necessary to use a connector adapter, which changes a dataset to a dataterm. This cable is also known as a '"null'
modem cable.

48 e Chapter 4 Software Tools and Communication DMC-40x0

RS232 - Main Port {P1} DATATERM

1 No Connect 6 No Connect

2 Transmit Data - output 7 RTS - input

3 Receive Data - input 8 CTS - output

4 No Connect 9 No connect (Can connect to +5V or sample clock)
5 Ground

RS232 - Auxiliary Port {P2} DATASET

1 CTS —input 6 CTS - input

2 Transmit Data - input 7 RTS - output

3 Receive Data - output 8 CTS - input

4 RTS — output 9 No Connect (Can be connected to 5V with APWR jumper)
5 Ground

RS-232 Configuration

Configure your PC for 8-bit data, one start-bit, one stop-bit, full duplex and no parity. The baud rate for the RS232
communication can be selected by setting the proper switch configuration on the front panel according to the table
below.

Baud Rate Selection

SWITCH SETTINGS
19.2 384 BAUD RATE
ON ON 9600
ON OFF 19200
OFF ON 38400
OFF OFF 115200

Handshaking

The RS232 main port is set for hardware handshaking. Hardware Handshaking uses the RTS and CTS lines. The
CTS line will go high whenever the DMC-40x0 is not ready to receive additional characters. The RTS line will
inhibit the DMC-40x0 from sending additional characters. Note, the RTS line goes high for inhibit.

The auxiliary port of the DMC-40x0 can be configured either as a general port or for the daisy-chain. When
configured as a general port, the port can be commanded to send ASCII messages to another DMC-40x0 controller
or to a display terminal or panel.

(Configure Communication) at port 2. The command is in the format of:
CC m,n,r,p

where m sets the baud rate, n sets for either handshake or non-handshake mode, r sets for general port or the
auxiliary port, and p turns echo on or off.

m - Baud Rate — 9600,19200,38400,115200

n - Handshake - 0=No; 1=Yes

r - Mode - 0=Disabled; 1=enabled

p - Echo - 0=0ff; 1=0n; Valid only if r=0

DMC-40x0 Chapter 4 Software Tools and Communication e 49

NOTE: for the handshake of the auxiliary port, the roles for the RTS and CTS lines are reversed.
Example:

CC 19200,0,1,1 Configure auxiliary communication port for 19200 baud, no handshake, general
port mode and echo turned on.

Ethernet Configuration

Communication Protocols

The Ethernet is a local area network through which information is transferred in units known as packets.
Communication protocols are necessary to dictate how these packets are sent and received. The DMC-40x0
supports two industry standard protocols, TCP/IP and UDP/IP. The controller will automatically respond in the
format in which it is contacted.

TCP/IP is a "connection" protocol. The master must be connected to the slave in order to begin communicating.
Each packet sent is acknowledged when received. If no acknowledgement is received, the information is assumed
lost and is resent.

Unlike TCP/IP, UDP/IP does not require a "connection". This protocol is similar to communicating via RS232. If
information is lost, the controller does not return a colon or question mark. Because the protocol does not provide
for lost information, the sender must re-send the packet.

Although UDP/IP is more efficient and simple, Galil recommends using the TCP/IP protocol. TCP/IP insures that if
a packet is lost or destroyed while in transit, it will be resent.

Ethernet communication transfers information in ‘packets’. The packets must be limited to 512 data bytes
(including UDP/TCP IP Header) or less. Larger packets could cause the controller to lose communication.

NOTE: In order not to lose information in transit, Galil recommends that the user wait for an acknowledgement of
receipt of a packet before sending the next packet.

Addressing

There are three levels of addresses that define Ethernet devices. The first is the Ethernet or hardware address. This
is a unique and permanent 6 byte number. No other device will have the same Ethernet address. The DMC-40x0
Ethernet address is set by the factory and the last two bytes of the address are the serial number of the controller.

The second level of addressing is the IP address. This is a 32-bit (or 4 byte) number. The IP address is constrained
by each local network and must be assigned locally. Assigning an IP address to the controller can be done in a
number of ways.

Connecting using the BOOT-P utility

The first method is to use the BOOT-P utility via the Ethernet connection (the DMC-40x0 must be connected to
network and powered). For a brief explanation of BOOT-P, see the section: Third Party Software. Either a BOOT-
P server on the internal network or the Galil terminal software may be used. To use the Galil BOOT-P utility, select
the registry in the terminal emulator. Select the DMC-40x0 and then the Ethernet Parameters tab. Enter the IP
address at the prompt and select either TCP/IP or UDP/IP as the protocol. When done, click on the ASSIGN IP
ADDRESS. The Galil Terminal Software will respond with a list of all controllers on the network that do not
currently have IP addresses. The user selects the controller and the software will assign the controller the specified
IP address. Then enter the terminal and type in BN to save the IP address to the controller's non-volatile memory.

50 e Chapter 4 Software Tools and Communication DMC-40x0

CAUTION: Be sure that there is only one BOOT-P server running. If your network has DHCP or
BOOT-P running, it may automatically assign an IP address to the controller upon linking it to the
network. In order to ensure that the IP address is correct, please contact your system administrator
before connecting the controller to the Ethernet network.

Controller Communications Paramekters il

General Parameters Ethermet Parameters |

IP Address:
Set IP Address | Cable Info
Frimary Handle
TCP -
Unzolicited Mezsages D'ata Records
|Open 2ndhandle | [ValidIP Address Reqd 7]
Message Handle Fefresh B ate [mzec] il
UDF b Eache Depth il

¥ OpenMulticastHandle ™ Ewvent diiven DMCCommand

k. | Cancel it |1

Figure 4-1 Ethernet Parameters

Assigning an address via the RS232 port

The second method for setting an IP address is to send the IA command through the DMC-40x0 main RS-232 port.
The IP address you want to assign may be entered as a 4 byte number delimited by commas (industry standard uses
periods) or a signed 32 bit number (Ex. A 124,51,29,31 or IA 2083724575). Type in BN to save the IP address to
the controller's non-volatile memory.

NOTE: Galil strongly recommends that the IP address selected is not one that can be accessed across the Gateway.
The Gateway is an application that controls communication between an internal network and the outside world.

The third level of Ethernet addressing is the UDP or TCP port number. The Galil controller does not require a
specific port number. The port number is established by the client or master each time it connects to the controller.

Communicating with Multiple Devices

The DMC-40x0 is capable of supporting multiple masters and slaves. The masters may be multiple PC's that send
commands to the controller. The slaves are typically peripheral I/O devices that receive commands from the
controller.

NOTE: The term "Master" is equivalent to the internet "client". The term "Slave" is equivalent to the internet
"server".

DMC-40x0 Chapter 4 Software Tools and Communication e 51

An Ethernet handle is a communication resource within a device. The DMC-40x0 can have a maximum of 8
Ethernet handles open at any time. When using TCP/IP, each master or slave uses an individual Ethernet handle. In
UDP/IP, one handle may be used for all the masters, but each slave uses one. (Pings and ARPs do not occupy
handles.) Ifall 8 handles are in use and a 9™ master tries to connect, it will be sent a "reset packet" that generates the
appropriate error in its windows application.

NOTE: There are a number of ways to reset the controller. Hardware reset (push reset button or power down
controller) and software resets (through Ethernet or RS232 by entering RS). The only reset that will not cause the
controller to disconnect is a software reset via the Ethernet.

When the Galil controller acts as the master, the IH command is used to assign handles and connect to its slaves.
The IP address may be entered as a 4 byte number separated with commas (industry standard uses periods) or as a
signed 32 bit number. A port number may also be specified, but if it is not, it will default to 1000. The protocol
(TCP/IP or UDP/IP) to use must also be designated at this time. Otherwise, the controller will not connect to the
slave. (Ex. IHB=151,25,255,9<179>2 This will open handle #2 and connect to the IP address 151.25.255.9, port
179, using TCP/IP)

An additional protocol layer is available for speaking to I/O devices. Modbus is an RS-485 protocol that packages
information in binary packets that are sent as part of a TCP/IP packet. In this protocol, each slave has a 1 byte slave
address. The DMC-40x0 can use a specific slave address or default to the handle number. The port number for
Modbus is 502.

The Modbus protocol has a set of commands called function codes. The DMC-40x0 supports the 10 major function
codes:

Function Code Definition

01 Read Coil Status (Read Bits)

02 Read Input Status (Read Bits)

03 Read Holding Registers (Read Words)

04 Read Input Registers (Read Words)

05 Force Single Coil (Write One Bit)

06 Preset Single Register (Write One Word)
07 Read Exception Status (Read Error Code)
15 Force Multiple Coils (Write Multiple Bits)
16 Preset Multiple Registers (Write Words)
17 Report Slave ID

The DMC-40x0 provides three levels of Modbus communication. The first level allows the user to create a raw
packet and receive raw data. It uses the MBh command with a function code of —1. The format of the command is

MBh = -1,len,array[] where len is the number of bytes
array[] is the array with the data

The second level incorporates the Modbus structure. This is necessary for sending configuration and special
commands to an I/O device. The formats vary depending on the function code that is called. For more information
refer to the Command Reference.

The third level of Modbus communication uses standard Galil commands. Once the slave has been configured, the
commands that may be used are @IN[], @ANT[], SB, CB, OB, and AO. For example, AO 2020,8.2 would tell I/O
number 2020 to output 8.2 volts.

If a specific slave address is not necessary, the I/O number to be used can be calculated with the following:

52 e Chapter 4 Software Tools and Communication DMC-40x0

I/O Number = (HandleNum*1000) + ((Module-1)*4) + (BitNum-1)

Where HandleNum is the handle number from 1 (A) to 6 (F). Module is the position of the module in the rack from
1 to 16. BitNum is the I/O point in the module from 1 to 4.

If an explicit slave address is to be used, the equation becomes:
I/O Number = (SlaveAddress*10000) + (HandleNum*1000) +((Module-1)*4) + (Bitnum-1)
To view an example procedure for communicating with an OPTO-22 rack, refer to the appendix.

Which devices receive what information from the controller depends on a number of things. If a device queries the
controller, it will receive the response unless it explicitly tells the controller to send it to another device. If the
command that generates a response is part of a downloaded program, the response will route to whichever port is
specified as the default (unless explicitly told to go to another port with the CF command). To designate a specific
destination for the information, add {Eh} to the end of the command. (Ex. MG{EC}"Hello" will send the message
"Hello" to handle #3. TP,,?{EF} will send the z axis position to handle #6.)

Multicasting

A multicast may only be used in UDP/IP and is similar to a broadcast (where everyone on the network gets the
information) but specific to a group. In other words, all devices within a specified group will receive the
information that is sent in a multicast. There can be many multicast groups on a network and are differentiated by
their multicast IP address. To communicate with all the devices in a specific multicast group, the information can be
sent to the multicast IP address rather than to each individual device IP address. All Galil controllers belong to a
default multicast address of 239.255.19.56. The controller's multicast IP address can be changed by using the IA> u
command.

Using Third Party Software

Galil supports ARP, BOOT-P, and Ping which are utilities for establishing Ethernet connections. ARP is an
application that determines the Ethernet (hardware) address of a device at a specific IP address. BOOT-P is an
application that determines which devices on the network do not have an IP address and assigns the IP address you
have chosen to it. Ping is used to check the communication between the device at a specific IP address and the host
computer.

The DMC-40x0 can communicate with a host computer through any application that can send TCP/IP or UDP/IP
packets. A good example of this is Telnet, a utility that comes with most Windows systems.

Data Record

The DMC-40x0 can provide a block of status information with the use of a single command, QR. This command,
along with the QZ command can be very useful for accessing complete controller status. The QR command will
return 4 bytes of header information and specific blocks of information as specified by the command arguments:

QR ABCDEFGHST

Each argument corresponds to a block of information according to the Data Record Map below. If no argument is
given, the entire data record map will be returned. Note that the data record size will depend on the number of axes.

Note: UB = Unsigned Byte (1), UW = Unsigned Word (2), SW = Signed Word (2), SL = Signed Long Word
(4), UL = Unsigned Long Word (4)

ADDR TYPE ITEM
00 UB 1* Byte of Header
01 UB 2" Byte of Header

DMC-40x0 Chapter 4 Software Tools and Communication e 53

02
03
04-05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26-27
28-29
30-31
32-33
34-35
36-37
38-39
40-41
42
43
44
45
46
47
48
49
50
51
52-55
56-59
60-61
62-63

UB
UB
uw
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
SW (new)
SW (new)
SW (new)
SW (new)
SW (new)
SW (new)
SW (new)
SW (new)
UB
UB
UB
UB
UB
UB
UB
UB
UB
UB
UL (new)
UL (new)
UW (new)
Uw

3" Byte of Header

4™ Byte of Header

sample number

general input block 0 (inputs 1-8)
general input block 1 (inputs 9-16)
general input block 2 (inputs 17-24)
general input block 3 (inputs 25-32)
general input block 4 (inputs 33-40)
general input block 5 (inputs 41-48)
general input block 6 (inputs 49-56)
general input block 7 (inputs 57-64)
general input block 8 (inputs 65-72)
general input block 9 (inputs 73-80)
general output block 0 (outputs 1-8)
general output block 1 (outputs 9-16)
general output block 2 (outputs 17-24)
general output block 3 (outputs 25-32)
general output block 4 (outputs 33-40)
general output block 5 (outputs 41-48)
general output block 6 (outputs 49-56)
general output block 7 (outputs 57-64)
general output block 8 (outputs 65-72)
general output block 9 (outputs 73-80)
Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Ethernet Handle A Status

Ethernet Handle B Status

Ethernet Handle C Status

Ethernet Handle D Status

Ethernet Handle E Status

Ethernet Handle F Status

Ethernet Handle G Status

Ethernet Handle H Status

error code

thread status — see bit field map below
Amplifier Status

Segment Count for Contour Mode

Buffer space remaining — Contour Mode

segment count of coordinated move for S plane

54 e Chapter 4 Software Tools and Communication

DMC-40x0

64-65 Uw coordinated move status for S plane — see bit field map below
66-69 SL distance traveled in coordinated move for S plane
70-71 UW (new) Buffer space remaining — S Plane
72-73 uw segment count of coordinated move for T plane
74-75 uw Coordinated move status for T plane — see bit field map below
76-79 SL distance traveled in coordinated move for T plane
80-81 UW (new) Buffer space remaining — T Plane
Axis information:
82-83 uw A axis status — see bit field map below
84 UB A axis switches — see bit field map below
85 UB A axis stop code
86-89 SL A axis reference position
90-93 SL A axis motor position
94-97 SL A axis position error
98-101 SL A axis auxiliary position
102-105 SL A axis velocity
106-109 SL (new size) A axis torque
110-111 SW A axis analog input
112 UB(new) A Hall Input Status
113 UB Reserved
114-117 SL (new) A User defined variable (ZA)
118-119 uw B axis status — see bit field map below
120 UB B axis switches — see bit field map below
121 UB B axis stop code
122-125 SL B axis reference position
126-129 SL B axis motor position
130-133 SL B axis position error
134-137 SL B axis auxiliary position
138-141 SL B axis velocity
142-145 SL (new size) B axis torque
146-147 SW B axis analog input
148 UB (new) B Hall Input Status
149 UB Reserved
150-153 SL (new) B User defined variable (ZA)
154-155 uw C axis status — see bit field map below
156 UB C axis switches — see bit field map below
157 UB C axis stop code
158-161 SL C axis reference position
162-165 SL C axis motor position
166-169 SL C axis position error
170-173 SL C axis auxiliary position
174-177 SL C axis velocity
178-181 SL (new size) C axis torque
182-183 SW C axis analog input
DMC-40x0 Chapter 4 Software Tools and Communication e 55

184
185
186-189
190-191
192
193
194-197
198-201
202-205
206-209
210-213
214-217
218-219
220
221
222-225
226-227
228
229
230-233
234-237
238-241
242-245
246-249
250-253
254-255
256
257
258-261
262-263
264
265
266-269
270-273
274-277
278-281
282-285
286-289
290-291
292
293
294-297
298-299
300
301

UB (new)
UB

SL (new)
Uw

UB

UB

SL

SL

SL

SL

SL

SL (new size)
SW

UB (new)
UB

SL (new)
Uw

UB

UB

SL

SL

SL

SL

SL

SL (new size)
SW

UB (new)
UB

SL (new)
uw

UB

UB

SL

SL

SL

SL

SL

SL (new size)
SwW

UB (new)
UB

SL (new)
uw

UB

UB

C Hall Input Status

Reserved

C User defined variable (ZA)

D axis status — see bit field map below
D axis switches — see bit field map below
D axis stop code

D axis reference position

D axis motor position

D axis position error

D axis auxiliary position

D axis velocity

D axis torque

D axis analog input

D Hall Input Status

Reserved

D User defined variable (ZA)

E axis status — see bit field map below
E axis switches — see bit field map below
E axis stop code

E axis reference position

E axis motor position

E axis position error

E axis auxiliary position

E axis velocity

E axis torque

E axis analog input

E Hall Input Status

Reserved

E User defined variable (ZA)

F axis status — see bit field map below
F axis switches — see bit field map below
F axis stop code

F axis reference position

F axis motor position

F axis position error

F axis auxiliary position

F axis velocity

F axis torque

F axis analog input

F Hall Input Status

Reserved

F User defined variable (ZA)

G axis status — see bit field map below
G axis switches — see bit field map below

G axis stop code

56 e Chapter 4 Software Tools and Communication

DMC-40x0

302-305 SL G axis reference position

306-309 SL G axis motor position
310-313 SL G axis position error
314-317 SL G axis auxiliary position
318-321 SL G axis velocity

322-325 SL (new size) G axis torque

326-327 SwW G axis analog input

328 UB (new) G Hall Input Status

329 UB Reserved

330-333 SL (new) G User defined variable (ZA)
334-335 Uw H axis status — see bit field map below
336 UB H axis switches — see bit field map below
337 UB H axis stop code

338-341 SL H axis reference position
342-345 SL H axis motor position
346-349 SL H axis position error
350-353 SL H axis auxiliary position
354-357 SL H axis velocity

358-361 SL (new size) H axis torque

362-363 SW H axis analog input

364 UB (new) H Hall Input Status

365 UB Reserved

366-369 SL (new) H User defined variable (ZA)

DMC-40x0 Chapter 4 Software Tools and Communication e 57

Explanation Data Record Bit Fields
Thread Status (1 Byte)

BIT 7 BIT 6 BIT S BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
Thread 7 Thread 6 Thread 5 Thread 4 Thread 3 Thread 2 Thread 1 Thread 0
Running Running Running Running Running Running Running Running

Coordinated Motion Status for S or T Plane (2 Byte)

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8
Move in N/A N/A N/A N/A N/A N/A N/A
Progress
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT O
N/A N/A Motion Motion Motion N/A N/A N/A
is is is
slewing stopping making
due to final
ST or decel.
Limit
Switch

Axis Status (1 Word)

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8
Move in Mode of | Mode of (FE) Home 1* Phase 2" Phase Mode of
Progress Motion Motion Find (HM) in of HM of HM Motion
PA or PA only Edge in Progress complete complete Coord.
PR Progress or FI Motion
command
issued
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT O
Negative Mode of Motion Motion Motion Latch is 3rd Phase Motor
Direction Motion is is is armed of HM in Off
Move slewing stopping making Progress
due to final
Cont
ontout ST of decel.
Limit
Switch
Axis Switches (1 Byte)
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
Latch State N/A N/A State of State of State of Stepper
Occurred of Forward Reverse Home Mode
Latch Limit Limit Input
Input

Notes Regarding Velocity and Torque Information

The velocity information that is returned in the data record is 64 times larger than the value returned when using the
command TV (Tell Velocity). See command reference for more information about TV.

The Torque information is represented as a number in the range of +/-32767. Maximum negative torque is -32767.
Maximum positive torque is 32767. Zero torque is 0.

58 e Chapter 4 Software Tools and Communication DMC-40x0

QZ Command

The QZ command can be very useful when using the QR command, since it provides information about the
controller and the data record. The QZ command returns the following 4 bytes of information.

BYTE # | INFORMATION

Number of axes present

number of bytes in general block of data record

0
1
2 number of bytes in coordinate plane block of data record
3

Number of Bytes in each axis block of data record

Controller Response to Commands

Most DMC-40x0 instructions are represented by two characters followed by the appropriate parameters. Each
instruction must be terminated by a carriage return or semicolon.

Instructions are sent in ASCII, and the DMC-40x0 decodes each ASCII character (one byte) one at a time. It takes
approximately 0.05 msec for the controller to decode each command.

After the instruction is decoded, the DMC-40x0 returns a response to the port from which the command was
generated. If the instruction was valid, the controller returns a colon (:) or a question mark (?) if the instruction was
not valid. For example, the controller will respond to commands which are sent via the main RS-232 port back
through the RS-232 port, and to commands which are sent via the Ethernet port back through the Ethernet port.

For instructions that return data, such as Tell Position (TP), the DMC-40x0 will return the data followed by a
carriage return, line feed and : .

It is good practice to check for : after each command is sent to prevent errors. An echo function is provided to
enable associating the DMC-40x0 response with the data sent. The echo is enabled by sending the command EO 1
to the controller.

Unsolicited Messages Generated by Controller

When the controller is executing a program, it may generate responses which will be sent via the main RS-232 port
or Ethernet ports. This response could be generated as a result of messages using the MG command OR as a result
of 'a command error. These responses are known as unsolicited messages since they are not generated as the direct
response to a command.

Messages can be directed to a specific port using the specific Port arguments — see the MG and CF commands in the
Command Reference. If the port is not explicitly given or the default is not changed with the CF command,
unsolicited messages will be sent to the default port. The default port is the main serial port.

The controller has a special command, CW, which can affect the format of unsolicited messages. This command is
used by Galil Software to differentiate response from the command line and unsolicited messages. The command,

CW!1 causes the controller to set the high bit of ASCII characters to 1 of all unsolicited characters. This may cause
characters to appear garbled to some terminals. This function can be disabled by issuing the command, CW2. For

more information, see the CW command in the Command Reference.

When handshaking is used (hardware and/or software handshaking) characters which are generated by the controller
are placed in a FIFO buffer before they are sent out of the controller. The size of the RS-232 buffer is 512 bytes.
When this buffer becomes full, the controller must either stop executing commands or ignore additional characters
generated for output. The command CW,1 causes the controller to ignore all output from the controller while the
FIFO is full. The command, CW ,0 causes the controller to stop executing new commands until more room is made

DMC-40x0 Chapter 4 Software Tools and Communication e 59

available in the FIFO. This command can be very useful when hardware handshaking is being used and the
communication line between controller and terminal will be disconnected. In this case, characters will continue to
build up in the controller until the FIFO is full. For more information, see the CW command in the Command
Reference.

Galil SmartTERM

SmartTERM is Galil’s basic communications utility that allows the user to perform basic tasks such as sending
commands directly to the controller, editing, downloading, and executing DMC programs, uploading and
downloading arrays, and updating controller firmware. The latest version of SmartTERM can be downloaded from
the Galil website at

http://www.galilmc.com/support/download.html

=101

File Edit Tools Yiew Help

me| | $EI[2E)] 2 [N2

P—— —— | Puolling
TP me Bt [T~ Ono
: Type Commands Here it :
COUNT=0 I— Terminal
AP E]"' Options
MG "BEEF ! E,’
W 100 k

COLNT=C0UMT+1
JP LR, COUNT <10

-

N s

Program Editor Window Eﬁ'ﬁ

; i

(0,1, 0,0 i

' Get Responses Here =
| Ling 0:Col 4 |C:4Testing. dmec

Skatus: connecked with Galil DMC-1842% axis u:u:}\tru:uller revision 1.}({5 |CF'.F‘ LM i

/ . . \ \Filename
Controller Revision Info & Serial # Cursor Line # and Column #

Info Display Area

Figure 4.2 - Galil SmartTERM

The following SmartTERM File menu items briefly describe some basic features of the application.

Download File... Launches a file-open dialog box that selects a file (usually a DMC file) to be
downloaded to the controller. This command uses the DL command to download the
file, clearing all programs in the controller's RAM.

60 e Chapter 4 Software Tools and Communication DMC-40x0

Upload File... Opens a file save-as dialog that creates a file for saving the DMC program that is in
the controller's RAM. This command uses the UL command to upload the file.

Send File... Launches a file-open dialog box that selects a file (usually a DMC file) to be sent to
the controller. Each line of the file is sent to the controller as a command and is
executed immediately.

Download Array... Opens the "Download Array" dialog box that allows an array in the controller's
RAM to be defined and populated with data. The dialog box uses the DMC32.d11 's
DMCArrayDownload function to download the array. The controller's firmware
must be recent enough to support the QD command. Array values specified in the
data file must be comma separated or CRLF delimited.

Upload Array... Opens the "Upload Array" dialog box that allows an array in the controller's RAM to
be saved to a file on the hard disk. The dialog box uses the DMC32.d11's
DMCArrayUpload function to upload the array. The controller's firmware must be
recent enough to support the QU command.

Convert File ASCII to Binary... ~ Opens a dialog box that allows a file containing Galil ASCII language commands to
be converted to Galil binary commands and saves the result to the specified file
name.

Convert File Binary to ASCIL... Opens a dialog box that allows a file containing Galil binary language commands to
be converted to Galil ASCII commands and saves the result to the specified file
name.

Send Binary File... Launches a file-open dialog box that selects a file (usually a DMC file) to be sent to
the controller. This file can contain binary commands. Each line of the file is sent to
the controller as a command and executed immediately.

Additionally, the Tools menu items described below provide some advanced tasks such as updating firmware,
diagnostics, accessing the registry editor, and resetting the controller.

Select Controller... Opens the "Select Controller" dialog box that displays the currently registered Galil
Motion Controllers. Selecting a controller from the list and clicking on the OK button or
double-clicking a controller will cause the application to close any current connections
to a controller and open a new connection to the selected controller. DMCTerminal only
connects to a single controller at a time. However, multiple instances of the application
can be open at once.

Disconnect from Controller ~ Causes the currently open connection to a Galil Motion Controller to be closed.

Controller Registration... Opens the "Edit Registry" dialog box, which allows the Galil Registry entries to be
edited or new entries for non Plug-and-Play controllers to be created or deleted.

DMC Program Editor... Causes the terminal to enter "Smart Terminal with Editor" mode. This is the same as
clicking on the "Smart Terminal with Editor" mode button on the terminal window's
toolbar.

Reset Controller Offers three "reset" options. "Reset Controller" sends an RS command to the controller.

The RS command does not clear any saved variables, programs, or parameters. "Master
Reset" performs a master reset on the controller. A Master Reset does clear any saved
variables, programs, or parameters. "Clear Controller's FIFO" causes the controller's
output FIFO to be cleared of data.

Device Driver The Device Driver menu selection is available to operating systems and/or controllers
that have device drivers that can be stopped and started. This includes drivers on NT4.0
and serial and Ethernet controllers on all operating systems.

DMC-40x0 Chapter 4 Software Tools and Communication e 61

Diagnostics The "Diagnostics" menu allows diagnostics to be stopped and started. It also will load
the diagnostics output file specified in the Tools/Options menu to be loaded into the

editor window for analysis. The "Test Controller" command tests the current controller
with a series of standard communication tests.

The "Update Firmware" command allows new firmware to be downloaded to the
currently connected controller. Selecting this command will cause a file-open dialog box
to open, allowing the user to specify a *. HEX file to be specified for download. The
latest firmware files can be downloaded from Galil's website.

Update Firmware...

Causes the Data Record dialog box to be displayed for the currently connected
Display Data Record controller. The dialog automatically configures itself to display the data record for each
type of Galil Motion Controller.

The Options menu command causes the Options dialog to be displayed. The Options
Options dialog box allows several application options to be set. These option settings are
preserved between uses.

DMC Program Editor Window

The Program Editor Window is used to create application programs (.DMC) that are downloaded to the controller.
The editor window is also useful for uploading and editing programs already residing in the controller memory.
This window has basic text editing features such as copy, cut, paste, etc. Also the editor window File function
allows an application program to be downloaded with compression (80 characters wide) This allows the user to
write an application program in the editor window that is longer than the normal line limitation (2000 lines) and
download it to the controller.

Additionally, dynamic syntax help is available by activating the syntax help button(“:A->" icon) or typing CTRL-H.

DMC Data Record Display

The DMC SmartTERM utility program includes a “Data Record” display window that is useful for observing the
current status of all the major functions of the controller including axis specific data, I/O status, application program
status, and general status.

To display the Data Record (shown in Fig 4.3), select Display Data Record under the Tools menu of DMC
SmartTERM.

62 e Chapter 4 Software Tools and Communication DMC-40x0

& pMC4080 Data Record and Galil Amplifier Status

General Status

Thread 0 Running
Thread 1 Running
Thread 2 Running
Thread 2 Running
Thread 4 Running
Thread & Running
Thread & Running
Thread 7 Running

Axis Status

AR (C[DE

Maowe in F‘mgress|

| r1aode of Mation P& or F‘Rl

B Mode of Mation PA anly]

'Find Edge’ in Progress]

'Horne' in Progress|

15t Phase HM Carnplate]

2nd Phase HM Complete or F Issued|

0]Error Code] Mode of Motion Coord, Mation|
43,750|Sample Murnber| Mg Direction Mowve|
[Made of Mation Contaur]
General [/ B Mation is Slewing]

[Mation is Stopping dus to ST or Limit Switch]
B[Mation is Making Final Dreceleration]

7|6 [(5({4]3]2]1
| |Fi:ed Input Bank 0
DD i It Boamh 1

e ; Latch is Armed]
F!xed Cutput E-ank o 3rd Phase of HM in Progress|
Fixed Cutput Bank 1 Matar OFF|

Confgured Input Bank 2
Configured Input Bank 3
Configured Input Bank 4
Configured Input Bank G

Coordinated Motion Status

Configured Input Bank & = | T .

Maowve in F‘rogress|
Configured Input Bank 7 — S =

Motion is Slewing|
Configured Input Bank 2 — — - -
Configured Input Bank 3 || Motin is StappinglST or LimSwech]|

Matian iz Making Final Decel]

Axis Switches i 0]Seqrnent Sount|
c1l 511|puffer Space Remaining|
1] 0| Distance Traveled|

@_l
State of Latch Input Contaur Maode

D000 R|W =t of Forward |J.'|'l'l.i'5|]Seqrment Sount]

511|puffer Space Remaining|

Ayis Data
A B C C E F = H
0 0 0 0 0 0 0 0|Reference Pasition|
£29 0 E28 E28 E28 E28 E28 528 |Matar Pasition]

-529 0 528 528 -E2E -E2E -E2E -52&| Position Ervor|
0 0 0 0 0 0 0 0 | Auiliary F'u:-sitiu:-nl
0 0 0 0 0 0 0 i[welacity]

-E29 0 -E23 -E23 -E23 -E23 -E23 -528 [Torque]

8,464 0 £.443 £.443 g.443 g.443 g.443 8,443 [Analog Input]
1 1 1 1 1 1 1 1]Stap Codel
0 0 0 0 0 0 0 0| User W ariable|

Figure 4.3 - Data Record Display for a DMC-4080

The Data Record display is user customizable so that all, or just parts, of the record can be displayed. To modify the
display, right click on an object to access the options. For detailed information about the features of the Galil DMC
SmartTERM including the Data Record, please consult Help Topics under the Help menu.

Windows Servo Design Kit (WSDK)

The Galil Windows Servo Design Kit includes advanced tuning and diagnostic tools that allows the user to
maximize the performance of their systems, as well as aid in setup and configuration of Galil controllers. WSDK is
recommended for all first time users of Galil controllers. WSDK has an automatic servo tuning function that adjusts
the PID filter parameters for optimum performance and displays the resulting system step response. A four-channel
storage scope provides a display of the actual position, velocity, error and torque. WSDK also includes impulse, step

DMC-40x0 Chapter 4 Software Tools and Communication e 63

and frequency response tests, which are useful for analyzing system stability, bandwidth and resonances. WSDK can
be purchased from Galil via the web at :

http://store.yahoo.com/galilmc/wsdk32.html

Features Include:
e Automatic tuning for optimizing controller PID filter parameters
e Provides impulse, step and frequency response tests of actual hardware
e Four-channel storage scope for displaying position, velocity, error and torque
e Displays X versus Y position for viewing actual 2-D motion path

e Terminal editor and program editor for easy communication with the controller

™ Galil Motion Control - Servo Design Kit

File Terminal Help

Select Option

5

Tuning Methods

aaaaaa

otorage Scopes

aystem Evaluation

System Information

Galil Motion Control, Inc.

Set-up and Configuration Servo DESign Kit

Diagnostics

Maotion Brofile Builder

Getting Started

Exit

Q&N S QA

| Statuz; Connected with Galil DMC-1886 8 axiz controller revigion 1.0 alpha 0705

Figure 4.4- WSDK Main Screen

Creating Custom Software Interfaces

Galil provides programming tools so that users can develop their own custom software interfaces to a Galil
controller. These tools include the ActiveX Toolkit and DMCWin.

64 e Chapter 4 Software Tools and Communication DMC-40x0

ActiveX Toolkit

Galil's ActiveX Toolkit is useful for the programmer who wants to easily create a custom operator interface to a
Galil controller. The ActiveX Toolkit includes a collection of ready-made ActiveX COM controls for use with
Visual Basic, Visual C++, Delphi, LabVIEW and other ActiveX compatible programming tools. The most common
environment is Visual Basic 6, but Visual Basic.NET, Visual C++, Wonderware, LabVIEW and HPVEE have all
been tested by Galil to work with the .OCX controls.

The ActiveX Toolkit can be purchased from Galil at:
http://store.yahoo.com/galilmc/actoolsoffor.html

The ActiveX toolkit can save many hours of programming time. Built-in dialog boxes are provided for quick
parameter setup, selection of color, size, location and text. The toolkit controls are easy to use and provide context
sensitive help, making it ideal for even the novice programmer.

ActiveX Toolkit Includes:

e aterminal control for sending commands and editing programs

e apolling window for displaying responses from the controller such as position and speed

e astorage scope control for plotting real time trajectories such as position versus time or X versus Y
e asend file control for sending contour data or vector DMC files

e acontinuous array capture control for data collection, and for teach and playback

e a graphical display control for monitoring a 2-D motion path

e adiagnostics control for capturing current configurations

e adisplay control for input and output status

e avector motion control for tool offsets and corner speed control

For more detailed information on the ActiveX Toolkit, please refer to the user manual at
http://www.galilmc.com/support/manuals/activex.pdf.

DMCWin Programmers Toolkit

DMCWin is a programmer's toolkit for C/C++ and Visual Basic users. The toolkit includes header files for the Galil
communications API, as well as source code and examples for developing Windows® programs that communicate
to Galil Controllers. The Galil communications API includes functions to send commands, download programs,
download/upload arrays, access the data record, etc. For a complete list of all the functions, refer to the DMCWin
user manual at:

http://www.galilmc.com/support/manuals/dmcwin.pdf.

This software package is free for download and is available at:
http://www.galilmc.com/support/download.html

Galil Communications APl with C/C++

When programming in C/C++, the communications API can be used as included functions or through a class library.
All Galil communications programs written in C must include the DMCCOM.H file and access the API functions
through the declared routine calls. C++ programs can use the DMCCOM.H routines or use the class library defined
in DMCWIN.H.

After installing DMCWin into the default directory, the DMCCOM.H header file is located in C:\Program
Files\Gali\DMCWIN\INCLUDE. C++ programs that use the class library need the files DMCWIN.H and
DMCWIN.CPP, which contain the class definitions and implementations respectively. These can be found in the
C:\ProgramFiles\Gali\DMCWIN\CPP directory.

To link the application with the DLL’s, the DMC32.1ib file must be included in the project and is located at
C:\Program Files\Gali\DMCWIN\LIB

DMC-40x0 Chapter 4 Software Tools and Communication e 65

Example: A simple console application that sends commands to the controller

To initiate communication, declare a variable of type HANDLEDMC (a long integer) and pass the address of that
variable in the DMCOpen() function. If the DMCOpen() function is successful, the variable will contain the handle
to the Galil controller, which is required for all subsequent function calls. The following simple example program
written as a Visual C console application tells the controller to move the X axis 1000 encoder counts. Remember to
add DMC32.LIB to your project prior to compiling.

#include <windows.h>
#include <dmccom.h>
long IRetCode;
HANDLEDMC hDmc;

HWND hWnd;
int main(void)
{

// Connect to controller number 1
IRetCode= DMCOpen(l, hWnd, &hDmc);
if (rc == DMCNOERROR)

{

char szBuffer[64];

// Move the X axis 1000 counts

IRetCode = DMCCommand(hDmc, '"'PR1000;BGX;', szBuffer,
sizeof(szBuffer));
// Disconnect from controller number 1 as the last action
IRetCode = DMCClose(hDmc);

3

return O;

}

Galil Communications API with Visual Basic

Declare Functions

To use the Galil communications API functions, add the module file included in the
C:\ProgramFiles\Gali\DMCWIN\VB directory named DMCCOM40.BAS. This module declares the routines
making them available for the VB project. To add this file, select ‘Add Module’ from the ‘Project’ menu in VB5/6.

Sending Commands in VB

Most commands are sent to the controller with the DMCCommand() function. This function allows any Galil
command to be sent from VB to the controller. The DMCCommand() function will return the response from the
controller as a string. Before sending any commands the DMCOpen() function must be called. This function
establishes communication with the controller and is called only once.

This example code illustrates the use of DMCOpen() and DMCCommand(). A connection is made to controller #1
in the Galil registry upon launching the application. Then, the controller is sent the command ‘TPX’ whenever a
command button is pressed. The response is then placed in a text box. When the application is closed, the controller
is disconnected.

To use this example, start a new Visual Basic project, place a Text Box and a Command Button on a Form, add the
DMCCOM40.BAS module, and type the following code:

Dim m_nController As Integer
Dim m_hDmc As Long

Dim m_nRetCode As Long

Dim m_nResponseLength As Long

66 e Chapter 4 Software Tools and Communication DMC-40x0

Dim m_sResponse As String * 256

Private Sub Commandl_Click()

m_nRetCode = DMCCommand(m_hDmc, "TPX', m_sResponse, m_nResponselLength)
Textl.Text = Val(m_sResponse)
End Sub

Private Sub Form_Load()

m_nResponselLength = 256

m_nController = 1

m_nRetCode = DMCOpen(m_nController, 0, m_hDmc)
End Sub

Private Sub Form_Unload(Cancel As Integer)
m_nRetCode = DMCClose(m_hDmc)
End Sub

Where:

‘m_nController’ is the number for the controller in the Galil registry.

‘m_hDmc¢’ is the DMC handle used to identify the controller. It is returned by DMCOpen.
‘m_nRetCode’ is the return code for the routine.

‘m_nResponseLength’ is the response string length which must be set to the size of the response string.
‘m_sResponse’ is the string containing the controller response to the command.

DOS, Linux, and QNX tools

Galil offers unsupported code examples that demonstrate communications to the controller using the following
operating systems.

DOS

DOS based utilities & Programming Libraries for Galil controllers, which includes a terminal, utilities to upload and
download programs, and source code for BASIC and C programs. Download DMCDOS at :

http://www.galilmc.com/support/download.html#dos.

Linux

Galil has developed code examples for the Linux operating system. The installation includes sample drivers to
establish communication with Galil controllers. The current version of the software has been tested under Redhat
6.X O.S. All source code for the drivers and other utilities developed for Linux are available to customers..

For more information on downloading and installing the Linux drivers for Galil controllers, download the Linux
manual at:
http://www.galilme.com/support/manuals/Inxmanual.pdf.

QNX

Galil offers sample drivers for ISA and PCI cards for the QNX 4.24 operating system. We also offer drivers and
utilities for QNX 6.2 for PCI only. Download at:

http://www.galilme.com/support/download.html#linux.

DMC-40x0 Chapter 4 Software Tools and Communication e 67

Chapter 5 Command Basics

Introduction

The DMC-40x0 provides over 100 commands for specifying motion and machine parameters. Commands are
included to initiate action, interrogate status and configure the digital filter. These commands can be sent in ASCII
or binary.

In ASCII, the DMC-40x0 instruction set is BASIC-like and easy to use. Instructions consist of two uppercase letters
that correspond phonetically with the appropriate function. For example, the instruction BG begins motion, and ST
stops the motion. In binary, commands are represented by a binary code ranging from 80 to FF.

ASCII commands can be sent "live" over the communications port for immediate execution by the DMC-40x0, or
an entire group of commands can be downloaded into the DMC-40x0 memory for execution at a later time.
Combining commands into groups for later execution is referred to as Applications Programming and is discussed in
the following chapter. Binary commands cannot be used in Applications programming.

This section describes the DMC-40x0 instruction set and syntax. A summary of commands as well as a complete
listing of all DMC-40x0 instructions is included in the Command Reference.

Command Syntax - ASCI |

DMC-40x0 instructions are represented by two ASCII upper case characters followed by applicable arguments. A
space may be inserted between the instruction and arguments. A semicolon or <return> is used to terminate the
instruction for processing by the DMC-40x0 command interpreter.

NOTE: If you are using a Galil terminal program, commands will not be processed until an <return> command is
given. This allows the user to separate many commands on a single line and not begin execution until the user gives
the <return> command.

IMPORTANT: All DMC-40x0 commands are sent in upper case.

For example, the command
PR 4000 <return> Position relative

PR is the two character instruction for position relative. 4000 is the argument which represents the required position
value in counts. The <return> terminates the instruction. The space between PR and 4000 is optional.

For specifying data for the A,B,C and D axes, commas are used to separate the axes. If no data is specified for an
axis, a comma is still needed as shown in the examples below. If no data is specified for an axis, the previous value
is maintained.

To view the current values for each command, type the command followed by a ? for each axis requested.

68 Chapter 5 Command Basics DMC-40x0

PR 1000 Specify A only as 1000

PR ,2000 Specify B only as 2000
PR ,,3000 Specify C only as 3000
PR ,,,4000 Specify D only as 4000
PR 2000, 4000,6000, 8000 Specify A,B,C and D
PR ,8000, ,9000 Specify B and D only
PR ?,?,?,? Request A,B,C,D values
PR ,? Request B value only

The DMC-40x0 provides an alternative method for specifying data. Here data is specified individually using a
single axis specifier such as A, B, C or D. An equals sign is used to assign data to that axis. For example:

PRA=1000 Specify a position relative movement for the A axis of
1000
ACB=200000 Specify acceleration for the B axis as 200000

Instead of data, some commands request action to occur on an axis or group of axes. For example, ST AB stops
motion on both the A and B axes. Commas are not required in this case since the particular axis is specified by the
appropriate letter A, B, C or D. If no parameters follow the instruction, action will take place on all axes. Here are
some examples of syntax for requesting action:

BG A Begin A only
BG B Begin B only
BG ABCD Begin all axes
BG BD Begin B and D only
BG Begin all axes
4080 For controllers with 5 or more axes, the axes are referred to as A,B,C,D,E,F,G,H. The specifiers

X,Y,Z,W and A,B,C,D may be used interchangeably.

BG ABCDEFGH Begin all axes
BG D Begin D only

Coordinated Motion with more than 1 axis

When requesting action for coordinated motion, the letter S or T is used to specify the coordinated motion. This
allows for coordinated motion to be setup for two separate coordinate systems. Refer to the CA command in the
Command Reference for more information on specifying a coordinate system. For example:

BG S Begin coordinated sequence, S
BG TW Begin coordinated sequence, T, and D axis

DMC-40x0 Chapter 5 Command Basics e 69

Command Syntax — Binary (advanced)

Some commands have an equivalent binary value. Binary communication mode can be executed about 20% faster
than ASCII commands. Binary format can only be used when commands are sent from the PC and cannot be
embedded in an application program.

Binary Command Format

All binary commands have a 4 byte header and is followed by data fields. The 4 bytes are specified in hexadecimal
format.

Header Format:

Byte 1 specifies the command number between 80 to FF. The complete binary command number table is listed
below.

Byte 2 specifies the # of bytes in each field as 0,1,2,4 or 6 as follows:

00 No data fields (i.e. SH or BG)

01 One byte per field

02 One word (2 bytes per field)

04 One long word (4 bytes) per field

06 Galil real format (4 bytes integer and 2 bytes fraction)

Byte 3 specifies whether the command applies to a coordinated move as follows:

00 No coordinated motion movement
01 Coordinated motion movement

For example, the command STS designates motion to stop on a vector move, S coordinate system. The third byte
for the equivalent binary command would be 01.

Byte 4 specifies the axis # or data field as follows
Bit 7 = H axis or 8" data field
Bit 6 = G axis or 7" data field
Bit 5 = F axis or 6" data field
Bit 4 = E axis or 5" data field
Bit 3 =D axis or 4" data field
Bit 2 = C axis or 3" data field
Bit | = B axis or 2" data field
Bit 0 = A axis or 1* data field

Data fields Format

Data fields must be consistent with the format byte and the axes byte. For example, the command PR 1000,, -500
would be :

A7 02 00 05 03 E8 FE 0OC
where A7 is the command number for PR

02 specifies 2 bytes for each data field

70 e Chapter 5 Command Basics DMC-40x0

00 S is not active for PR

05 specifies bit 0 is active for A axis and bit 2 is active for C axis (2° + 2°=5)
03 E8 represents 1000

FE OC represents -500

Example
The command ST XYZS would be :
Al 00 01 07
where Al is the command number for ST
00 specifies 0 data fields
01 specifies stop the coordinated axes S

07 specifies stop X (bit 0), Y (bit 1) and Z (bit 2) 2°+2'+2° =7

Binary command table

Command No. Command No. Command No.
reserved 80 reserved ab reserved dé
KP 81 reserved ac reserved d7
KI 82 reserved ad RP d8
KD 83 reserved ae TP do
DV 84 reserved af TE da
AF 85 LM b0 TD db
KS 86 LI bl TV dc
PL 87 VP b2 RL dd
ER 88 CR b3 TT de
IL 89 N b4 TS df
TL 8a LE, VE b5 TI e0
MT 8b reserved b6 SC el
CE 8c VA b7 reserved e2
OE 8d VD b8 reserved e3
FL 8e A b9 reserved e4
BL 8f VR ba ™ e5
AC 90 reserved bb CN e6
DC 91 reserved bc Lz e7
SP 92 CM bd OoP e8
IT 93 CD be OB e9
FA 94 DT bf SB ea
FV 95 ET c0 CB eb
GR 96 EM cl 1I ec
DP 97 EP c2 EI ed

DMC-40x0 Chapter 5 Command Basics e 71

DE 98 EG c3 AL ee
OF 99 EB c4 reserved ef
GM 9a EQ c5 reserved f0
reserved 9b EC c6 reserved fl
reserved 9¢ reserved c7 reserved 2
reserved 9d AM c8 reserved 3
reserved 9e MC c9 reserved 4
reserved of ™ ca reserved 5
BG a0 MF cb reserved o
ST al MR cc reserved f7
AB a2 AD cd reserved 8
HM a3 AP ce reserved 9
FE a4 AR cf reserved fa
FI as AS do reserved fb
PA a6 Al dl reserved fc
PR a7 AT d2 reserved fd
IG a8 WT d3 reserved fe
MO a9 reserved d4 reserved ff
SH aa reserved ds

Controller Response to DATA

The DMC-40x0 returns a : for valid commands and a ? for invalid commands.

For example, if the command BG is sent in lower case, the DMC-40x0 will return a ?.

:bg <return> invalid command, lower case
? DMC-40x0 returns a ?

When the controller receives an invalid command the user can request the error code. The error code will specify
the reason for the invalid command response. To request the error code type the command TC1. For example:

7TC1 <return> Tell Code command
1 Unrecognized Returned response

There are many reasons for receiving an invalid command response. The most common reasons are: unrecognized
command (such as typographical entry or lower case), command given at improper time (such as during motion), or
a command out of range (such as exceeding maximum speed). A complete listing of all codes is listed in the TC
command in the Command Reference section.

Interrogating the Controller

Interrogation Commands

The DMC-40x0 has a set of commands that directly interrogate the controller. When the command is entered, the
requested data is returned in decimal format on the next line followed by a carriage return and line feed. The format
of the returned data can be changed using the Position Format (PF), Variable Format (VF) and Leading Zeros (LZ)
command. See Chapter 7 and the Command Reference.

72 e Chapter 5 Command Basics DMC-40x0

Summary of Interrogation Commands

RP Report Command Position
RL Report Latch

"RV Firmware Revision Information
SC Stop Code

TB Tell Status

TC Tell Error Code

TD Tell Dual Encoder

TE Tell Error

TI Tell Input

TP Tell Position

TR Trace

TS Tell Switches

TT Tell Torque

vV Tell Velocity

For example, the following example illustrates how to display the current position of the X axis:

TP A <return> Tell position A

0 Controllers Response
TP AB <return> Tell position A and B
0,0 Controllers Response

Interrogating Current Commanded Values.

Most commands can be interrogated by using a question mark (?) as the axis specifier. Type the command followed
by a ? for each axis requested.

PR ?2,?,?2,7? Request A,B,C,D values
PR ,? Request B value only

The controller can also be interrogated with operands.

Operands

Most DMC-40x0 commands have corresponding operands that can be used for interrogation. Operands must be
used inside of valid DMC expressions. For example, to display the value of an operand, the user could use the
command:

MG ‘operand’ where ‘operand’ is a valid DMC operand

All of the command operands begin with the underscore character (_). For example, the value of the current
position on the A axis can be assigned to the variable “V’ with the command:

V= _TPA

The Command Reference denotes all commands which have an equivalent operand as "Used as an Operand". Also,
see description of operands in Chapter 7.

Command Summary

For a complete command summary, see Command Reference manual.

DMC-40x0 Chapter 5 Command Basics e 73

Chapter 6 Programming Motion

Overview

The DMC-40x0 provides several modes of motion, including independent positioning and jogging, coordinated
motion, electronic cam motion, and electronic gearing. Each one of these modes is discussed in the following

sections.

The DMC-4010 are single axis controllers and use X-axis motion only. Likewise, the DMC-4020 use X and Y, the
DMC-4030 use X,Y, and Z, and the DMC-4040 use X,Y,Z, and W. The DMC-4050 use A,B,C,D, and E. The
DMC-4060 use A,B,C,D,E, and F. The DMC-4070 use A,B,C,D.E,F, and G. The DMC-4080 use the axes

A,B,C,D,EF,G, and H.

The example applications described below will help guide you to the appropriate mode of motion.

interchanged with ABCD.

4080' For controllers with 5 or more axes, the specifiers, ABCDEFGH, are used. XYZ and W may be

EXAMPLE APPLICATION MODE OF MOTION COMMANDS
Absolute or relative positioning where each axis is Independent Axis Positioning PA,PR
independent and follows prescribed velocity profile. SP,AC,DC
Velocity control where no final endpoint is prescribed. Independent Jogging G
Motion stops on Stop command. AC,DC
ST
Absolute positioning mode where absolute position targets Position Tracking PA,
may be sent to the controller while the axis is in motion. PT
SP
AC, DC
Motion Path described as incremental position points versus | Contour Mode CM
time. CD
DT
2,3 or 4 axis coordinated motion where path is described by | Linear Interpolation LM
linear segments. LL LE
VS,VR
VA,VD
74 e Chapter 6 Programming Motion DMC-40x0

2-D motion path consisting of arc segments and linear
segments, such as engraving or quilting.

Coordinated Motion

VM
VP
CR
VS,VR
VA,VD
VE

Third axis must remain tangent to 2-D motion path, such as
knife cutting.

Coordinated motion with tangent axis specified

VM

VP

CR
VS,VA,VD
TN

VE

Electronic gearing where slave axes are scaled to master axis
which can move in both directions.

Electronic Gearing

GA
GD
_GP
GR
GM (if gantry)

Master/slave where slave axes must follow a master such as
conveyer speed.

Electronic Gearing

GA
GD
_GP
GR

Moving along arbitrary profiles or mathematically
prescribed profiles such as sine or cosine trajectories.

Contour Mode

CM
CD
DT

Teaching or Record and Play Back

Contour Mode with Automatic Array Capture

CM
CD
DT
RA
RD
RC

Backlash Correction

Dual Loop

DV

Following a trajectory based on a master encoder position

Electronic Cam

EA
EM
EP
ET
EB
EG
EQ

Smooth motion while operating in independent axis
positioning

Independent Motion Smoothing

IT

Smooth motion while operating in vector or linear
interpolation positioning

Vector Smoothing

IT

Smooth motion while operating with stepper motors

Stepper Motor Smoothing

KS

Gantry - two axes are coupled by gantry

Gantry Mode

GR
GM

DMC-40x0

Chapter 6 Programming Motion e 75

Independent Axis Positioning

In this mode, motion between the specified axes is independent, and each axis follows its own profile. The user
specifies the desired absolute position (PA) or relative position (PR), slew speed (SP), acceleration ramp (AC), and
deceleration ramp (DC), for each axis. On begin (BG), the DMC-40x0 profiler generates the corresponding
trapezoidal or triangular velocity profile and position trajectory. The controller determines a new command position
along the trajectory every sample period until the specified profile is complete. Motion is complete when the last
position command is sent by the DMC-40x0 profiler. Note: The actual motor motion may not be complete when the
profile has been completed, however, the next motion command may be specified.

The Begin (BG) command can be issued for all axes either simultaneously or independently. XYZ or W axis
specifiers are required to select the axes for motion. When no axes are specified, this causes motion to begin on all
axes.

The speed (SP) and the acceleration (AC) can be changed at any time during motion, however, the deceleration
(DC) and position (PR or PA) cannot be changed until motion is complete. Remember, motion is complete when
the profiler is finished, not when the actual motor is in position. The Stop command (ST) can be issued at any time
to decelerate the motor to a stop before it reaches its final position.

An incremental position movement (IP) may be specified during motion as long as the additional move is in the
same direction. Here, the user specifies the desired position increment, n. The new target is equal to the old target
plus the increment, n. Upon receiving the IP command, a revised profile will be generated for motion towards the
new end position. The IP command does not require a begin. Note: If the motor is not moving, the IP command is
equivalent to the PR and BG command combination.

Command Summary - Independent Axis

COMMAND DESCRIPTION

PR x,y,z,w Specifies relative distance

PA x,y,z,w Specifies absolute position

SP x,y,z,w Specifies slew speed

AC x,y,z,w Specifies acceleration rate

DC x,y,z,w Specifies deceleration rate

BG XYZW Starts motion

ST XYZW Stops motion before end of move
IP x,y,z,w Changes position target

IT x,y,z,w Time constant for independent motion smoothing
AM XYZW Trippoint for profiler complete
MC XYZW Trippoint for “in position”

The lower case specifiers (X,y,z,w) represent position values for each axis.

The DMC-40x0 also allows use of single axis specifiers such as PRY=2000

Operand Summary - Independent Axis

OPERAND DESCRIPTION
_ACx Return acceleration rate for the axis specified by ‘x’
_DCx Return deceleration rate for the axis specified by ‘x’

76 e Chapter 6 Programming Motion DMC-40x0

_SPx Returns the speed for the axis specified by ‘x’

_PAx Returns current destination if ‘X’ axis is moving, otherwise returns the current commanded
position if in a move.

_PRx Returns current incremental distance specified for the ‘x’ axis

Example - Absolute Position Movement
PA 10000,20000 Specify absolute X,Y position
AC 1000000,1000000 Acceleration for X,Y
DC 1000000,1000000 Deceleration for X,Y
SP 50000, 30000 Speeds for X,Y
BG XY Begin motion

Example - Multiple Move Sequence

Required Motion Profiles:
X-Axis 500 counts Position

20000 count/sec Speed
500000 counts/sec2 Acceleration
Y-Axis 1000 counts Position
10000 count/sec Speed
500000 counts/sec? Acceleration
Z-Axis 100 counts Position
5000 counts/sec Speed

500000 counts/sec Acceleration

This example will specify a relative position movement on X, Y and Z axes. The movement on each axis will be
separated by 20 msec. Fig. 6.0 shows the velocity profiles for the X,Y and Z axis.

#A Begin Program
PR 2000,500,100 Specify relative position movement of 1000, 500 and 100 counts for X,Y and Z axes.
SP 20000,10000,5000 Specify speed of 20000, 10000, and 5000 counts / sec

AC 500000,500000,500000 Specify acceleration of 500000 counts / sec? for all axes
DC 500000,500000,500000 Specify deceleration of 500000 counts / sec? for all axes

BG X Begin motion on the X axis
WT 20 Wait 20 msec

BG Y Begin motion on the Y axis
WT 20 Wait 20 msec

BG zZ Begin motion on Z axis

EN End Program

DMC-40x0 Chapter 6 Programming Motion e 77

VELOCITY

(COUNTS/SEC)
X axis velocity profile
20000 - Y axis velocity profile
15000
Z axis velocity profile
10000
5000
TIME (ms)
|/\ 1 1
0 20 40 60 80 100

Figure 6.0 - Velocity Profiles of XYZ

Notes on figure 6.0: The X and Y axis have a ‘trapezoidal’ velocity profile, while the Z axis has a ‘triangular’
velocity profile. The X and Y axes accelerate to the specified speed, move at this constant speed, and then
decelerate such that the final position agrees with the command position, PR. The Z axis accelerates, but before the
specified speed is achieved, must begin deceleration such that the axis will stop at the commanded position. All 3
axes have the same acceleration and deceleration rate, hence, the slope of the rising and falling edges of all 3
velocity profiles are the same.

Independent Jogging

The jog mode of motion is very flexible because speed, direction and acceleration can be changed during motion.
The user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC) rate for each axis. The direction
of motion is specified by the sign of the JG parameters. When the begin command is given (BG), the motor
accelerates up to speed and continues to jog at that speed until a new speed or stop (ST) command is issued. If the
jog speed is changed during motion, the controller will make a accelerated (or decelerated) change to the new speed.

An instant change to the motor position can be made with the use of the IP command. Upon receiving this
command, the controller commands the motor to a position which is equal to the specified increment plus the current
position. This command is useful when trying to synchronize the position of two motors while they are moving.

Note that the controller operates as a closed-loop position controller while in the jog mode. The DMC-40x0
converts the velocity profile into a position trajectory and a new position target is generated every sample period.
This method of control results in precise speed regulation with phase lock accuracy.

Command Summary - Jogging

COMMAND DESCRIPTION

AC x,y,z,w Specifies acceleration rate

BG XYZW Begins motion

DC x,y,z,w Specifies deceleration rate

IP x,y,z,w Increments position instantly

IT x,y,z,w Time constant for independent motion smoothing
G +/-xy,z,w Specifies jog speed and direction

ST XYZW Stops motion

78 e Chapter 6 Programming Motion DMC-40x0

Parameters can be set with individual axes specifiers such as JGY=2000 (set jog speed for Y axis to 2000).

Operand Summary

- Independent Axis

OPERAND DESCRIPTION

_ACx Return acceleration rate for the axis specified by ‘x’

_DCx Return deceleration rate for the axis specified by ‘x’

_SPx Returns the jog speed for the axis specified by ‘x’

_TVx Returns the actual velocity of the axis specified by ‘x’ (averaged over 0.25 sec)

Example - Jog in X only

Jog X motor at 50000 count/s. After X motor is at its jog speed, begin jogging Z in reverse direction at 25000

count/s.

#A

AC 20000, ,20000
DC 20000, ,20000
JG 50000, ,-25000
BG X

AS X

BG zZ

EN

Specify X,Z acceleration of 20000 cts / sec
Specify X,Z deceleration of 20000 cts / sec
Specify jog speed and direction for X and Z axis
Begin X motion

Wait until X is at speed

Begin Z motion

Example - Joystick Jogging

The jog speed can also be changed using an analog input such as a joystick. Assume that for a 10 Volt input the

speed must be 50000 counts/sec.
#JOY
JGO
BGX
#B
V1 =@AN[1]
VEL=V1*50000/10
JG VEL
JP #B

Label

Set in Jog Mode
Begin motion
Label for loop
Read analog input
Compute speed
Change JG speed
Loop

Position Tracking

The Galil controller may be placed in the position tracking mode to support changing the target of an absolute
position move on the fly. New targets may be given in the same direction or the opposite direction of the current
position target. The controller will then calculate a new trajectory based upon the new target and the acceleration,
deceleration, and speed parameters that have been set. The motion profile in this mode is trapezoidal. There is not a
set limit governing the rate at which the end point may be changed, however at the standard TM rate, the controller
updates the position information at the rate of Imsec. The controller generates a profiled point every other sample,
and linearly interpolates one sample between each profiled point. Some examples of applications that may use this
mode are satellite tracking, missile tracking, random pattern polishing of mirrors or lenses, or any application that
requires the ability to change the endpoint without completing the previous move.

DMC-40x0

Chapter 6 Programming Motion e 79

The PA command is typically used to command an axis or multiple axes to a specific absolute position. For some
applications such as tracking an object, the controller must proceed towards a target and have the ability to change
the target during the move. In a tracking application, this could occur at any time during the move or at regularly
scheduled intervals. For example if a robot was designed to follow a moving object at a specified distance and the
path of the object wasn’t known the robot would be required to constantly monitor the motion of the object that it
was following. To remain within a specified distance it would also need to constantly update the position target it is
moving towards. Galil motion controllers support this type of motion with the position tracking mode. This mode
will allow scheduled or random updates to the current position target on the fly. Based on the new target the
controller will either continue in the direction it is heading, change the direction it is moving, or decelerate to a stop.

The position tracking mode shouldn’t be confused with the contour mode. The contour mode allows the user to
generate custom profiles by updating the reference position at a specific time rate. In this mode, the position can be
updated randomly or at a fixed time rate, but the velocity profile will always be trapezoidal with the parameters
specified by AC, DC, and SP. Updating the position target at a specific rate will not allow the user to create a
custom profile.

The following example will demonstrate the possible different motions that may be commanded by the controller in
the position tracking mode. In this example, there is a host program that will generate the absolute position targets.
The absolute target is determined based on the current information the host program has gathered on the object that
it is tracking. The position tracking mode does allow for all of the axes on the controller to be in this mode, but for
the sake of discussion, it is assumed that the robot is tracking only in the X dimension.

The controller must be placed in the position tracking mode to allow on the fly absolute position changes. This is
performed with the PT command. To place the X axis in this mode, the host would issue PT1 to the controller if
both X and Y axes were desired the command would be PT 1,1. The next step is to begin issuing PA command to
the controller. The BG command isn’t required in this mode, the SP, AC, and DC commands determine the shape of
the trapezoidal velocity profile that the controller will use.

Example Motion 1: The host program determines that the first target for the controller to move to is located at 5000
encoder counts. The acceleration and deceleration should be set to 150,000 cts/sec2 and the velocity is set to 50,000
cts/sec. The command sequence to perform this is listed below.

Command Description

PT1 Place the X axis in Position tracking mode

AC150000 Set the X axis acceleration to 150000 cts/sec?

DC150000 Set the X axis deceleration to 150000 cts/sec?

SP50000 Set the X axis speed to 50000 cts/sec

PA5000 Command the X axis to absolute position 5000 encoder counts

80 e Chapter 6 Programming Motion DMC-40x0

5000 4— — —— —

4000 ---- -~

3000 --------

e m b e e e e e -]
T

2000 --m - fo b

Q=== mmmm - o

10004 ----f---

=
[}
[}
=
Ec
[}
(=3}
= deoccocooon
=
[an}
L}
—
[}
=
=

Figure 6.1 Position vs. Time (msec) Motion 1

Example - Motion 2:

The previous step showed the plot if the motion continued all the way to 5000, however partway through the motion,
the object that was being tracked changed direction, so the host program determined that the actual target position
should be 2000 cts at that time. Figure 6.1 shows what the position profile would look like if the move was allowed
to complete to 5000 cts. The position was modified when the robot was at a position of 4200 cts. Note that the
robot actually travels to a distance of almost 5000 cts before it turns around. This is a function of the deceleration
rate set by the DC command. When a direction change is commanded, the controller decelerates at the rate specified
by the DC command. The controller then ramps the velocity in up to the value set with SP in the opposite direction
traveling to the new specified absolute position. In Figure 6.3 the velocity profile is triangular because the controller
doesn’t have sufficient time to reach the set speed of 50000 cts/sec before it is commanded to change direction.

4988 — — —/— — - T T —— ——

e :1-

2001 ---noe-

boooooocooboooooooodoooooooo

LTS SEERERRE S EPERRTREE SEPEERERRT R

L

997+ ----f---

=
(]
=
=
I
(=]
o
P
=
o
(=]
—
=
=
=

Figure 6.2: Position vs. Time (msec) Motion 2

DMC-40x0 Chapter 6 Programming Motion e 81

Figure 6.3 Velocity vs. Time (msec) Motion 2

Example Motion 4

In this motion, the host program commands the controller to begin motion towards position 5000, changes the target
to -2000, and then changes it again to 8000. Figure 6.4 shows the plot of position vs. time, Figure 6.5 plots velocity
vs. time, and Figure 6.6 demonstrates the use of motion smoothing (IT) on the velocity profile in this mode. The
jerk in the system is also affected by the values set for AC and DC.

Figure 6.4 Position vs. Time (msec) Motion 4

82 e Chapter 6 Programming Motion DMC-40x0

Figure 6.5 Velocity vs. Time Motion 4

Figure 6.6 Velocity cts/sec vs. Time (msec) with IT

Note the controller treats the point where the velocity passes through zero as the end of one move, and the beginning
of another move. IT is allowed, however it will introduce some time delay.

Trip Points

Most trip points are valid for use while in the position tracking mode. There are a few exceptions to this; the AM
and MC commands may not be used while in this mode. It is recommended that MF, MR, or AP be used, as they
involve motion in a specified direction, or the passing of a specific absolute position.

DMC-40x0 Chapter 6 Programming Motion e 83

Command Summary — Position Tracking Mode

COMMAND DESCRIPTION

AC n,n,n,n,n,n,n,n | Acceleration settings for the specified axes

AP n,n,n,n,n,n,n,n | Trip point that holds up program execution until an absolute position has been reached

DC n,n,n,n,n,n,n,n | Deceleration settings for the specified axes

MF n,n,n,n,n,nnn | Trip point to hold up program execution until n number of counts have passed in the
forward direction. Only one axis at a time may be specified.

MR n,n,n,n,n,n,n,n | Trip point to hold up program execution until n number of counts have passed in the
reverse direction. Only one axis at a time may be specified.

PT n,n,n,n,n,n,n,n Command used to enter and exit the Trajectory Modification Mode

PA n,n,nnnnnn | Command Used to specify the absolute position target

SP n,n,n,n,n,n,n,n Speed settings for the specified axes

Linear Interpolation Mode

The DMC-40x0 provides a linear interpolation mode for 2 or more axes. In linear interpolation mode, motion
between the axes is coordinated to maintain the prescribed vector speed, acceleration, and deceleration along the
specified path. The motion path is described in terms of incremental distances for each axis. An unlimited number
of incremental segments may be given in a continuous move sequence, making the linear interpolation mode ideal
for following a piece-wise linear path. There is no limit to the total move length.

The LM command selects the Linear Interpolation mode and axes for interpolation. For example, LM YZ selects
only the Y and Z axes for linear interpolation.

When using the linear interpolation mode, the LM command only needs to be specified once unless the axes for
linear interpolation change.

Specifying Linear Segments

The command LI x,y,z,w or LI a,b,c,d,e,f,g,h specifies the incremental move distance for each axis. This means
motion is prescribed with respect to the current axis position. Up to 511 incremental move segments may be given
prior to the Begin Sequence (BGS) command. Once motion has begun, additional LI segments may be sent to the
controller.

The clear sequence (CS) command can be used to remove LI segments stored in the buffer prior to the start of the
motion. To stop the motion, use the instructions STS or AB. The command, ST, causes a decelerated stop. The
command, AB, causes an instantaneous stop and aborts the program, and the command AB1 aborts the motion only.

The Linear End (LE) command must be used to specify the end of a linear move sequence. This command tells the
controller to decelerate to a stop following the last LI command. If an LE command is not given, an Abort AB1
must be used to abort the motion sequence.

It is the responsibility of the user to keep enough LI segments in the DMC-40x0 sequence buffer to ensure
continuous motion. If the controller receives no additional LI segments and no LE command, the controller will
stop motion instantly at the last vector. There will be no controlled deceleration. LM? or LM returns the available
spaces for LI segments that can be sent to the buffer. 511 returned means the buffer is empty and 511 LI segments
can be sent. A zero means the buffer is full and no additional segments can be sent. As long as the buffer is not full,
additional LI segments can be sent at PC bus speeds.

The instruction _CS returns the segment counter. As the segments are processed, CS increases, starting at zero.
This function allows the host computer to determine which segment is being processed.

84 e Chapter 6 Programming Motion DMC-40x0

Additional Commands

The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration and deceleration. The
DMC-40x0 computes the vector speed based on the axes specified in the LM mode. For example, LM XYZ
designates linear interpolation for the X,Y and Z axes. The vector speed for this example would be computed using
the equation:

VS2=XS2+YS2+ZS2, where XS, YS and ZS are the speed of the X,Y and Z axes.
The controller always uses the axis specifications from LM, not LI, to compute the speed.

IT is used to set the S-curve smoothing constant for coordinated moves. The command AV n is the ‘After Vector’
trippoint, which halts program execution until the vector distance of n has been reached.

An Example of Linear Interpolation Motion:

#LMOVE label

DP 0,0 Define position of X and Y axes to be 0

LMXY Define linear mode between X and Y axes.

L1 5000,0 Specify first linear segment

LI 0,5000 Specify second linear segment

LE End linear segments

VS 4000 Specify vector speed

BGS Begin motion sequence

AV 4000 Set trippoint to wait until vector distance of 4000 is reached
VS 1000 Change vector speed

AV 5000 Set trippoint to wait until vector distance of 5000 is reached
VS 4000 Change vector speed

EN Program end

In this example, the XY system is required to perform a 90° turn. In order to slow the speed around the corner, we
use the AV 4000 trippoint, which slows the speed to 1000 count/s. Once the motors reach the corner, the speed is
increased back to 4000 cts / s.

Specifying Vector Speed for Each Segment

The instruction VS has an immediate effect and, therefore, must be given at the required time. In some applications,
such as CNC, it is necessary to attach various speeds to different motion segments. This can be done by two
functions: <n and >m

For example: LI x,y,z,w <n >m

The first command, < n, is equivalent to commanding VSn at the start of the given segment and will cause an
acceleration toward the new commanded speeds, subjects to the other constraints.

The second function, > m, requires the vector speed to reach the value m at the end of the segment. Note that the
function > m may start the deceleration within the given segment or during previous segments, as needed to meet the
final speed requirement, under the given values of VA and VD.

Note, however, that the controller works with one > m command at a time. As a consequence, one function may be
masked by another. For example, if the function >100000 is followed by >5000, and the distance for deceleration is
not sufficient, the second condition will not be met. The controller will attempt to lower the speed to 5000, but will
reach that at a different point.

As an example, consider the following program.

#ALT Label for alternative program
DP 0,0 Define Position of X and Y axis to be 0
LMXY Define linear mode between X and Y axes.

L1 4000,0 <4000 >1000 Specify first linear segment with a vector speed of 4000 and end speed 1000

DMC-40x0 Chapter 6 Programming Motion e 85

L1 1000,1000 < 4000
>1000

L1 0,5000 < 4000
>1000

LE
BGS
EN

Specify second linear segment with a vector speed of 4000 and end speed

1000

Specify third linear segment with a vector speed of 4000 and end speed 1000

End linear segments
Begin motion sequence
Program end

Changing Feed Rate:
The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of .0001. This

command takes effect immediately and causes VS to be scaled. VR also applies when the vector speed is specified

with the ‘<’ operator. This is a useful feature for feed rate override. VR does not ratio the accelerations. For
example, VR .5 results in the specification VS 2000 to be divided in half.

Command Summary - Linear Interpolation

COMMAND DESCRIPTION

LM xyzw Specify axes for linear interpolation

LM abcedefgh (same) controllers with 5 or more axes

LM? Returns number of available spaces for linear segments in DMC-40x0 sequence buffer.
Zero means buffer full. 511 means buffer empty.

LIx,y,z,w <n Specify incremental distances relative to current position, and assign vector speed n.

Ll ab,c,d,e,f,gh<

n

VSn Specity vector speed

VAn Specify vector acceleration

VD n Specify vector deceleration

VR n Specify the vector speed ratio

BGS Begin Linear Sequence

CS Clear sequence

LE Linear End- Required at end of LI command sequence

LE? Returns the length of the vector (resets after 2147483647)

AMS Trippoint for After Sequence complete

AV n Trippoint for After Relative Vector distance, n

IT S curve smoothing constant for vector moves

Operand Summary - Linear Interpolation

OPERAND DESCRIPTION

_AV Return distance traveled

_CS Segment counter - returns number of the segment in the sequence, starting at zero.

LE Returns length of vector (resets after 2147483647)

LM Returns number of available spaces for linear segments in DMC-40x0 sequence buffer.
Zero means buffer full. 511 means buffer empty.

86 e Chapter 6 Programming Motion

DMC-40x0

_VPm Return the absolute coordinate of the last data point along the trajectory.
(m=X,Y,Z or W or A,B,C,D,E,F,G or H)

To illustrate the ability to interrogate the motion status, consider the first motion segment of our example,
#LMOVE, where the X axis moves toward the point X=5000. Suppose that when X=3000, the controller is
interrogated using the command ‘MG _AV’. The returned value will be 3000. The value of CS, VPXand VPY
will be zero.

Now suppose that the interrogation is repeated at the second segment when Y=2000. The value of _AV at this
point is 7000, CS equals 1, VPX=5000 and VPY=0.

Example - Linear Move

Make a coordinated linear move in the ZW plane. Move to coordinates 40000,30000 counts at a vector speed of
100000 counts/sec and vector acceleration of 1000000 counts/sec2.

LM ZW Specify axes for linear interpolation
L1,,40000, 30000 Specify ZW distances

LE Specify end move

VS 100000 Specify vector speed

VA 1000000 Specify vector acceleration

VD 1000000 Specify vector deceleration

BGS Begin sequence

Note that the above program specifies the vector speed, VS, and not the actual axis speeds VZ and VW. The axis
speeds are determined by the controller from:

VS =VZ? +VW?

The result is shown in Figure 6.7

DMC-40x0 Chapter 6 Programming Motion e 87

30000

27000

POSITION W

3000

0 4000 36000 40000
POSITION Z

FEEDRATE

0 0.1 0.5 06 TIME (sec)

VELOCITY
Z-AXIS

TIME (sec)

VELOCITY
W-AXIS

TIME (sec)

Figure 6.7 - Linear Interpolation

Example - Multiple Moves

This example makes a coordinated linear move in the XY plane. The Arrays VX and VY are used to store 750
incremental distances which are filled by the program #LOAD.

#LOAD Load Program
DM VX [750],VY [750] Define Array
COUNT=0 Initialize Counter

88 e Chapter 6 Programming Motion DMC-40x0

N=0

#LOOP

VX [COUNT]=N

VY [COUNT]=N

N=N+10

COUNT=COUNT+1

JP #LOOP,COUNT<750
#A

LM XY

COUNT=0

#LOOP2; JP#LO0OP2, _LM=0
JS#C,COUNT=500

L1 VX[COUNT],VY[COUNT]
COUNT=COUNT+1

JP #LOOP2,COUNT<750
LE

AMS

MG ““DONE”

EN

#C;BGS;EN

Initialize position increment
LOOP

Fill Array VX

Fill Array VY

Increment position

Increment counter

Loop if array not full

Label

Specify linear mode for XY
Initialize array counter

IT sequence buffer full, wait
Begin motion on 500" segment
Specify linear segment
Increment array counter
Repeat until array done

End Linear Move

After Move sequence done

Send Message

End program

Begin Motion Subroutine

Vector Mode: Linear and Circular Interpolation Motion

The DMC-40x0 allows a long 2-D path consisting of linear and arc segments to be prescribed. Motion along the
path is continuous at the prescribed vector speed even at transitions between linear and circular segments. The
DMC-40x0 performs all the complex computations of linear and circular interpolation, freeing the host PC from this

time intensive task.

The coordinated motion mode is similar to the linear interpolation mode. Any pair of two axes may be selected for
coordinated motion consisting of linear and circular segments. In addition, a third axis can be controlled such that it
remains tangent to the motion of the selected pair of axes. Note that only one pair of axes can be specified for

coordinated motion at any given time.

The command VM m,n,p where ‘m’ and ‘n’ are the coordinated pair and p is the tangent axis (Note: the commas
which separate m,n and p are not necessary). For example, VM XWZ selects the XW axes for coordinated motion

and the Z-axis as the tangent.

Specifying the Coordinate Plane

The DMC-40x0 allows for 2 separate sets of coordinate axes for linear interpolation mode or vector mode. These

two sets are identified by the letters S and T.

To specify vector commands the coordinate plane must first be identified. This is done by issuing the command
CAS to identify the S plane or CAT to identify the T plane. All vector commands will be applied to the active

coordinate system until changed with the CA command.

Specifying Vector Segments

The motion segments are described by two commands; VP for linear segments and CR for circular segments. Once
a set of linear segments and/or circular segments have been specified, the sequence is ended with the command VE.
This defines a sequence of commands for coordinated motion. Immediately prior to the execution of the first

coordinated movement, the controller defines the current position to be zero for all movements in a sequence. Note:

DMC-40x0 Chapter 6 Programming Motion e 89

This ‘local’ definition of zero does not affect the absolute coordinate system or subsequent coordinated motion
sequences.

The command, VP x,y specifies the coordinates of the end points of the vector movement with respect to the starting
point. Non-sequential axis do not require comma delimitation. The command, CR r,q,d define a circular arc with a
radius r, starting angle of q, and a traversed angle d. The notation for q is that zero corresponds to the positive
horizontal direction, and for both q and d, the counter-clockwise (CCW) rotation is positive.

Up to 511 segments of CR or VP may be specified in a single sequence and must be ended with the command VE.
The motion can be initiated with a Begin Sequence (BGS) command. Once motion starts, additional segments may
be added.

The Clear Sequence (CS) command can be used to remove previous VP and CR commands which were stored in the
buffer prior to the start of the motion. To stop the motion, use the instructions STS or AB1. ST stops motion at the
specified deceleration. AB1 aborts the motion instantaneously.

The Vector End (VE) command must be used to specify the end of the coordinated motion. This command requires
the controller to decelerate to a stop following the last motion requirement. If a VE command is not given, an Abort
(AB1) must be used to abort the coordinated motion sequence.

It is the responsibility of the user to keep enough motion segments in the DMC-40x0 sequence buffer to ensure
continuous motion. If the controller receives no additional motion segments and no VE command, the controller
will stop motion instantly at the last vector. There will be no controlled deceleration. LM? or LM returns the
available spaces for motion segments that can be sent to the buffer. 511 returned means the buffer is empty and 511
segments can be sent. A zero means the buffer is full and no additional segments can be sent. As long as the buffer
is not full, additional segments can be sent at PC bus speeds.

The operand _CS can be used to determine the value of the segment counter.

Additional commands

The commands VS n, VA n and VD n are used for specifying the vector speed, acceleration, and deceleration.

IT is the s curve smoothing constant used with coordinated motion.

Specifying Vector Speed for Each Segment:

The vector speed may be specified by the immediate command VS. It can also be attached to a motion segment
with the instructions

VP x,y <n>m
CR1,0,6 <n>m

The first command, <n, is equivalent to commanding VSn at the start of the given segment and will cause an
acceleration toward the new commanded speeds, subjects to the other constraints.

The second function, > m, requires the vector speed to reach the value m at the end of the segment. Note that the
function > m may start the deceleration within the given segment or during previous segments, as needed to meet the
final speed requirement, under the given values of VA and VD.

Note, however, that the controller works with one > m command at a time. As a consequence, one function may be
masked by another. For example, if the function >100000 is followed by >5000, and the distance for deceleration is
not sufficient, the second condition will not be met. The controller will attempt to lower the speed to 5000, but will
reach that at a different point.

Changing Feed Rate:

The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of .0001. This
command takes effect immediately and causes VS scaled. VR also applies when the vector speed is specified with
the ‘<’ operator. This is a useful feature for feed rate override. VR does not ratio the accelerations. For example,
VR 0.5 results in the specification VS 2000 to be divided by two.

90 e Chapter 6 Programming Motion DMC-40x0

Compensating for Differences in Encoder Resolution:

By default, the DMC-40x0 uses a scale factor of 1:1 for the encoder resolution when used in vector mode. If this is
not the case, the command, ES can be used to scale the encoder counts. The ES command accepts two arguments
which represent the number of counts for the two encoders used for vector motion. The smaller ratio of the two
numbers will be multiplied by the higher resolution encoder. For more information, see ES command in the
Command Reference.

Trippoints:

The AV n command is the After Vector trippoint, which waits for the vector relative distance of n to occur before
executing the next command in a program.

Tangent Motion:

Several applications, such as cutting, require a third axis (i.e. a knife blade), to remain tangent to the coordinated
motion path. To handle these applications, the DMC-40x0 allows one axis to be specified as the tangent axis. The
VM command provides parameter specifications for describing the coordinated axes and the tangent axis.

VM m,n,p m,n specifies coordinated axes p specifies tangent axis such as X,Y,Z,W p=N
turns off tangent axis

Before the tangent mode can operate, it is necessary to assign an axis via the VM command and define its offset and
scale factor via the TN m,n command. m defines the scale factor in counts/degree and n defines the tangent position
that equals zero degrees in the coordinated motion plane. The operand TN can be used to return the initial position
of the tangent axis.

Example:

Assume an XY table with the Z-axis controlling a knife. The Z-axis has a 2000 quad counts/rev encoder and has
been initialized after power-up to point the knife in the +Y direction. A 180° circular cut is desired, with a radius of
3000, center at the origin and a starting point at (3000,0). The motion is CCW, ending at (-3000,0). Note that the 0°
position in the XY plane is in the +X direction. This corresponds to the position -500 in the Z-axis, and defines the
offset. The motion has two parts. First, X,Y and Z are driven to the starting point, and later, the cut is performed.
Assume that the knife is engaged with output bit 0.

H#EXAMPLE Example program

VM XYZ XY coordinate with Z as tangent

TN 2000/360,-500 2000/360 counts/degree, position -500 is O degrees in XY plane
CR 3000,0,180 3000 count radius, start at 0 and go to 180 CCW

VE End vector

CBO Disengage knife

PA 3000,0,_TN Move X and Y to starting position, move Z to initial tangent position
BG XYz Start the move to get into position

AM XYZ When the move is complete

SBO Engage knife

WT50 Wait 50 msec for the knife to engage

BGS Do the circular cut

AMS After the coordinated move is complete

CBO Disengage knife

MG “ALL DONE”

EN End program

DMC-40x0 Chapter 6 Programming Motion e 91

Command Summary - Coordinated Motion Sequence

COMMAND

DESCRIPTION.

VM m,n

Specifies the axes for the planar motion where m and n represent the planar axes and p is
the tangent axis.

VP m,n

Return coordinate of last point, where m=X,Y,Z or W.

CR 1,0, tAO®

Specifies arc segment where r is the radius, © is the starting angle and A® is the travel
angle. Positive direction is CCW.

VS s,t

Specify vector speed or feed rate of sequence.

VA s,t

Specify vector acceleration along the sequence.

VD s,t

Specify vector deceleration along the sequence.

VR s,t

Specify vector speed ratio

BGST

Begin motion sequence, S or T

CSST

Clear sequence, S or T

AV st

Trippoint for After Relative Vector distance.

AMST

Holds execution of next command until Motion Sequence is complete.

TN m,n

Tangent scale and offset.

ES m,n

Ellipse scale factor.

IT s,t

S curve smoothing constant for coordinated moves

LM?

Return number of available spaces for linear and circular segments in DMC-40x0
sequence buffer. Zero means buffer is full. 511 means buffer is empty.

CAS or CAT

Specifies which coordinate system is to be active (S or T)

Operand Summary - Coordinated Motion Sequence

OPERAND

DESCRIPTION

_VPM

The absolute coordinate of the axes at the last intersection along the sequence.

AV

Distance traveled.

LM

Number of available spaces for linear and circular segments in DMC-40x0 sequence
buffer. Zero means buffer is full. 511 means buffer is empty.

Ke

Segment counter - Number of the segment in the sequence, starting at zero.

_VE

Vector length of coordinated move sequence.

When AV is used as an operand, AV returns the distance traveled along the sequence.

The operands VPX and VPY can be used to return the coordinates of the last point specified along the path.

Example:

Traverse the path shown in Fig. 6.8. Feed rate is 20000 counts/sec. Plane of motion is XY

VM XY

VS 20000
VA 1000000
VD 1000000
VP -4000,0

Specify motion plane
Specify vector speed
Specify vector acceleration
Specify vector deceleration
Segment AB

92 e Chapter 6 Programming Motion DMC-40x0

CR 1500,270,-180 Segment BC

VP 0,3000 Segment CD
CR 1500,90,-180 Segment DA
VE End of sequence
BGS Begin Sequence

The resulting motion starts at the point A and moves toward points B, C, D, A. Suppose that we interrogate the
controller when the motion is halfway between the points A and B.

The value of AV is 2000

The value of CSis 0

_VPX and VPY contain the absolute coordinate of the point A

Suppose that the interrogation is repeated at a point, halfway between the points C and D.
The value of AV is 4000+1500m+2000=10,712

The value of CSis 2

_VPX, VPY contain the coordinates of the point C

C (-4000,3000) D (0.3000)
R = 1500
B (-4000,0) A (0,0)

Figure 6.8 - The Required Path

Electronic Gearing

This mode allows up to 8 axes to be electronically geared to some master axes. The masters may rotate in both
directions and the geared axes will follow at the specified gear ratio. The gear ratio may be different for each axis
and changed during motion.

The command GAX yzw or GA ABCDEFGH specifies the master axes. GR x,y,z,w specifies the gear ratios for the
slaves where the ratio may be a number between +/-127.9999 with a fractional resolution of .0001. There are two
modes: standard gearing and gantry mode. The gantry mode (enabled with the command GM) allows the gearing to
stay enabled even if a limit is hit or an ST command is issued. GR 0,0,0,0 turns off gearing in both modes.

The command GM x,y,z,w select the axes to be controlled under the gantry mode. The parameter 1 enables gantry
mode, and 0 disables it.

GR causes the specified axes to be geared to the actual position of the master. The master axis is commanded with
motion commands such as PR, PA or JG.

When the master axis is driven by the controller in the jog mode or an independent motion mode, it is possible to
define the master as the command position of that axis, rather than the actual position. The designation of the

DMC-40x0 Chapter 6 Programming Motion e 93

commanded position master is by the letter, C. For example, GACX indicates that the gearing is the commanded
position of X.

An alternative gearing method is to synchronize the slave motor to the commanded vector motion of several axes
performed by GAS. For example, if the X and Y motor form a circular motion, the Z axis may move in proportion
to the vector move. Similarly, if X,Y and Z perform a linear interpolation move, W can be geared to the vector
move.

Electronic gearing allows the geared motor to perform a second independent or coordinated move in addition to the
gearing. For example, when a geared motor follows a master at a ratio of 1:1, it may be advanced an additional
distance with PR, or JG, commands, or VP, or LI.

Ramped Gearing

In some applications, especially when the master is traveling at high speeds, it is desirable to have the gear ratio
ramp gradually to minimize large changes in velocity on the slave axis when the gearing is engaged. For example if
the master axis is already traveling at 1,000,000 cts/sec and the slave will be geared at a ratio of 1:1 when the
gearing is engaged, the slave will instantly develop following error, and command maximum current to the motor.
This can be a large shock to the system. For many applications it is acceptable to slowly ramp the engagement of
gearing over a greater time frame. Galil allows the user to specify an interval of the master axis over which the
gearing will be engaged. For example, the same master X axis in this case travels at 1,000,000 counts/sec, and the
gear ratio is 1:1, but the gearing is slowly engaged over 30,000 cts of the master axis, greatly diminishing the initial
shock to the slave axis. Figure 1 below shows the velocity vs. time profile for instantaneous gearing. Figure 6.9
shows the velocity vs. time profile for the gradual gearing engagement.

976750.0q

T32562.57

-----p----4
-----p----4
-----p----4

48837504 - F---nobmmne e feemmeee

q-----
q-----
q-----

244187 .5+

0.0

0 1000

[
= N
]
.
[P
=
[n7]
[P
]
(mu]
=4----

0

976750.04

|
|
]
|

TI286254--------

r---
1
1
1
1
1
1
L
1

—--—-p----
1
1
1
1
1
'
1
1

B
1
1
'
1
1
1
1
1
T
1
1
1
1
1
1
1
1

FEET: R4 SN TR S

244187 H - ono-

—q-----

1
1
1
1
1
1
]
1
1
1
1
1
1
'
1
1
- e -
1
1
'
1
1
1
1
'
i
1
1
1
1
1
1
1
'

0.0

)0 1000

=2
=4 - -
[}
=
(o}
=
[m7]
(o}
[}
(mn}
= - - -

1]

Figure 6.9 Velocity cts/sec vs. Time (msec) Instantaneous Gearing Engagement

94 e Chapter 6 Programming Motion DMC-40x0

87675001 . .
[l VR EEEEEE SEEPEEEE ------ -------
48837501 ------- ---------------
244187 54-4--- ------- ------

D'Dn m:u zéu 350
876750.0———————
732662 54------ ------- ------
ABA375.01------4 ------- --------------
244187 54------ ------- ------

D'Dn m:u zéu 350

Figure 6.10 Velocity (cts/sec) vs. Time (msec) Ramped Gearing

The slave axis for each figure is shown on the bottom portion of the figure; the master axis is shown on the top
portion. The shock to the slave axis will be significantly less in figure 6.10 than in figure 6.9. The ramped gearing
does have one consequence. There isn’t a true synchronization of the two axes, until the gearing ramp is complete.
The slave will lag behind the true ratio during the ramp period. If exact position synchronization is required from
the point gearing is initiated, then the position must be commanded in addition to the gearing. The controller keeps
track of this position phase lag with the GP operand. The following example will demonstrate how the command
is used.

Example — Electronic Gearing Over a Specified Interval

Objective Run two geared motors at speeds of 1.132 and -.045 times the speed of an external master. Because the
master is traveling at high speeds, it is desirable for the speeds to change slowly.

Solution: Use a DMC-4030 controller where the Z-axis is the master and X and Y are the geared axes. We will
implement the gearing change over 6000 counts (3 revolutions) of the master axis.

MO Z Turn Z off, for external master

GA Z, Z Specify Z as the master axis for both X and Y.
GDb6000,6000 Specify ramped gearing over 6000 counts of the master axis.
GR 1.132,-.045 Specify gear ratios

Question: What is the effect of the ramped gearing?

Answer: Below, in the example titled Electronic Gearing, gearing would take effect immediately. From the start of
gearing if the master traveled 6000 counts, the slaves would travel 6792 counts and 270 counts.

Using the ramped gearing, the slave will engage gearing gradually. Since the gearing is engaged over the interval of
6000 counts of the master, the slave will only travel ~3396 counts and ~135 counts respectively. The difference
between these two values is stored in the GPn operand. If exact position synchronization is required, the IP
command is used to adjust for the difference.

DMC-40x0 Chapter 6 Programming Motion e 95

Command Summary - Electronic Gearing

COMMAND DESCRIPTION

GAn Specifies master axes for gearing where:
n=X,Y,Z or W or A,B,C,D,E,F,G,H for main encoder as master

n=CX,CY,CZ, CW or CA, CB,CC,CD,CE,CF,CG,CH for commanded position.
n=DX,DY,DZ or DW or DA, DB, DC, DD, DE, DF,DG,DH for auxiliary encoders

n =S or T for gearing to coordinated motion.

GD ab,c,d,e,f,g,h | Sets the distance the master will travel for the gearing change to take full effect.

_GPn This operand keeps track of the difference between the theoretical distance traveled if
gearing changes took effect immediately, and the distance traveled since gearing
changes take effect over a specified interval.

GR a,b,c,d,e,f,g,h | Sets gear ratio for slave axes. 0 disables electronic gearing for specified axis.

GM a,b,c.d,e,f,g,h | X =1 sets gantry mode, 0 disables gantry mode

MR x,y,z,w Trippoint for reverse motion past specified value. Only one field may be used.

MF x,y,z,w Trippoint for forward motion past specified value. Only one field may be used.

Example - Simple Master Slave

Master axis moves 10000 counts at slew speed of 100000 counts/sec. Y is defined as the master. X,Z,W are geared
to master at ratios of 5,-.5 and 10 respectively.

GA Y,,Y,Y Specify master axes as Y
GR 5,,-.5,10 Set gear ratios

PR ,10000 Specify Y position

SP ,100000 Specify Y speed

BGY Begin motion

Example - Electronic Gearing

Objective: Run two geared motors at speeds of 1.132 and -0.045 times the speed of an external master. The master
is driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder).

Solution: Use a DMC-4030 controller, where the Z-axis is the master and X and Y are the geared axes.

MO Z Turn Z off, for external master
GA Z, Z Specify Z as the master axis for both X and Y.
GR 1.132,-.045 Specify gear ratios

Now suppose the gear ratio of the X-axis is to change on-the-fly to 2. This can be achieved by commanding:
GR 2 Specify gear ratio for X axis to be 2

Example - Gantry Mode

In applications where both the master and the follower are controlled by the DMC-40x0 controller, it may be desired
to synchronize the follower with the commanded position of the master, rather than the actual position. This
eliminates the coupling between the axes which may lead to oscillations.

For example, assume that a gantry is driven by two axes, X,Y, on both sides. This requires the gantry mode for
strong coupling between the motors. The X-axis is the master and the Y-axis is the follower. To synchronize Y
with the commanded position of X, use the instructions:

96 e Chapter 6 Programming Motion DMC-40x0

GA, CX Specify the commanded position of X as master for Y.

GR,1 Set gear ratio for Y as 1:1
GM, 1 Set gantry mode

PR 3000 Command X motion

BG X Start motion on X axis

You may also perform profiled position corrections in the electronic gearing mode. Suppose, for example, that you
need to advance the slave 10 counts. Simply command

IP ,10 Specify an incremental position movement of 10 on Y axis.

Under these conditions, this IP command is equivalent to:
PR, 10 Specify position relative movement of 10 on Y axis
BGY Begin motion on Y axis

Often the correction is quite large. Such requirements are common when synchronizing cutting knives or conveyor
belts.

Example - Synchronize two conveyor belts with trapezoidal velocity correction

GA,X Define X as the master axis for Y.
GR,2 Set gear ratio 2:1 for Y

PR, 300 Specify correction distance
SP,5000 Specify correction speed

AC, 100000 Specify correction acceleration
DC, 100000 Specify correction deceleration
BGY Start correction

Electronic Cam

The electronic cam is a motion control mode which enables the periodic synchronization of several axes of motion.
Up to 7 axes can be slaved to one master axis. The master axis encoder must be input through a main encoder port.

The electronic cam is a more general type of electronic gearing which allows a table-based relationship between the
axes. It allows synchronizing all the controller axes. For example, the DMC-4080 controllers may have one master
and up to seven slaves.

To illustrate the procedure of setting the cam mode, consider the cam relationship for the slave axis Y, when the
master is X. Such a graphic relationship is shown in Figure 6.11.

Step 1. Selecting the master axis
The first step in the electronic cam mode is to select the master axis. This is done with the instruction
EAp where p=X,Y,Z,W,EF,G,H
p is the selected master axis

For the given example, since the master is x, we specify EAX

Step 2. Specify the master cycle and the change in the slave axis (or axes).

In the electronic cam mode, the position of the master is always expressed modulo one cycle. In this example, the
position of x is always expressed in the range between 0 and 6000. Similarly, the slave position is also redefined
such that it starts at zero and ends at 1500. At the end of a cycle when the master is 6000 and the slave is 1500, the
positions of both x and y are redefined as zero. To specify the master cycle and the slave cycle change, we use the
instruction EM.

DMC-40x0 Chapter 6 Programming Motion e 97

EM x,y,z,w
where x,y,z,w specify the cycle of the master and the total change of the slaves over one cycle.

The cycle of the master is limited to 8,388,607 whereas the slave change per cycle is limited to 2,147,483,647. If
the change is a negative number, the absolute value is specified. For the given example, the cycle of the master is
6000 counts and the change in the slave is 1500. Therefore, we use the instruction:

EM 6000,1500

Step 3. Specify the master interval and starting point.

Next we need to construct the ECAM table. The table is specified at uniform intervals of master positions. Up to
256 intervals are allowed. The size of the master interval and the starting point are specified by the instruction:

EP m,n
where m is the interval width in counts, and n is the starting point.

For the given example, we can specify the table by specifying the position at the master points of 0, 2000, 4000 and
6000. We can specify that by

EP 2000,0

Step 4. Specify the slave positions.
Next, we specify the slave positions with the instruction
ET[n]=x,y.,z,w
where n indicates the order of the point.

The value, n, starts at zero and may go up to 256. The parameters X,y,z,w indicate the corresponding slave position.
For this example, the table may be specified by

ET[0]=.0

ET[1]=,3000
ET[2]=.2250
ET[3]=,1500

This specifies the ECAM table.

Step 5. Enable the ECAM
To enable the ECAM mode, use the command
EB n
where n=1 enables ECAM mode and n=0 disables ECAM mode.

Step 6. Engage the slave motion

To engage the slave motion, use the instruction
EG X,y,z,w

where x,y,z,w are the master positions at which the corresponding slaves must be engaged.
If the value of any parameter is outside the range of one cycle, the cam engages immediately. When the cam is
engaged, the slave position is redefined, modulo one cycle.

Step 7. Disengage the slave motion
To disengage the cam, use the command

EQ x,y,z,w

98 e Chapter 6 Programming Motion DMC-40x0

where x,y,z,w are the master positions at which the corresponding slave axes are disengaged.

3000
2250

1500

0 2000 4000 60IOO Master X

Figure 6.11: Electronic Cam Example

This disengages the slave axis at a specified master position. If the parameter is outside the master cycle, the
stopping is instantaneous.

To illustrate the complete process, consider the cam relationship described by
the equation:

Y =0.5 % X + 100 sin (0.18«X)
where X is the master, with a cycle of 2000 counts.

The cam table can be constructed manually, point by point, or automatically by a program. The following program
includes the set-up.

The instruction EAX defines X as the master axis. The cycle of the master is
2000. Over that cycle, Y varies by 1000. This leads to the instruction EM 2000,1000.

Suppose we want to define a table with 100 segments. This implies increments of 20 counts each. If the master
points are to start at zero, the required instruction is EP 20,0.

The following routine computes the table points. As the phase equals 0.18X and X varies in increments of 20, the
phase varies by increments of 3.6[]. The program then computes the values of Y according to the equation and
assigns the values to the table with the instruction ET[N] =Y.

INSTRUCTION INTERPRETATION

#SETUP Label

EAX Select X as master

EM 2000,1000 Cam cycles

EP 20,0 Master position increments
N=20 Index

#LOOP Loop to construct table from equation
P = N*3.6 Note 3.6 = 0.18 * 20

S = @SIN [P]*100 Define sine position

Y = N*10+S Define slave position

ET [N] =, Y Define table

N = N+1

DMC-40x0 Chapter 6 Programming Motion e 99

JP #LOOP, N<=100 Repeat the process

EN

Now suppose that the slave axis is engaged with a start signal, input 1, but that both the engagement and
disengagement points must be done at the center of the cycle: X = 1000 and Y = 500. This implies that Y must be
driven to that point to avoid a jump.

This is done with the program:

INSTRUCTION
#RUN
EB1
PA,500
SP,5000
BGY

AM

All

EG, 1000
Al - 1
EQ, 1000
EN

INTERPRETATION
Label

Enable cam

starting position
Y speed

Move Y motor

After Y moved

Wait for start signal
Engage slave

Wait for stop signal
Disengage slave

End

Command Summary - Electronic CAM

Command Description

EAp Specifies master axes for electronic cam where:
p=X,Y,Z or W or A,B,C,D,E,F,G,H for main encoder as master or M or N a for
virtual axis master

EBn Enables the ECAM

ECn ECAM counter - sets the index into the ECAM table

EG x,y,z,w Engages ECAM

EM x,y,z,w Specifies the change in position for each axis of the CAM cycle

EP m,n Defines CAM table entry size and offset

EQm,n Disengages ECAM at specified position

ET[n] Defines the ECAM table entries

EwW Widen Segment (see Application Note #2444)

EY Set ECAM cycle count

Operand Summary - Electronic CAM

Command Description

_EB Contains State of ECAM

_EC Contains current ECAM index
_EGx Contains ECAM status for each axis
_EM Contains size of cycle for each axis

100 e Chapter 6 Programming Motion

DMC-40x0

_EP Contains value of the ECAM table interval

_EQx Contains ECAM status for each axis
_EY Set ECAM cycle count

Example - Electronic CAM

The following example illustrates a cam program with a master axis, Z, and two slaves, X and Y.

INSTRUCTION INTERPRETATION

#A;V1=0 Label; Initialize variable

PA 0,0;BGXY ; AMXY Go to position 0,0 on X and Y axes
EA Z Z axis as the Master for ECAM

EM 0,0,4000 Change for Z is 4000, zero for X, Y
EP400,0 ECAM interval is 400 counts with zero start
ET[0]=0,0 When master is at O position; 1°° point.
ET[1]=40,20 2" point in the ECAM table
ET[2]=120,60 3™ point in the ECAM table
ET[3]=240,120 4™ point in the ECAM table
ET[4]=280, 140 5% point in the ECAM table
ET[5]=280,140 6" point in the ECAM table
ET[6]=280,140 7™ point in the ECAM table
ET[7]=240,120 8™ point in the ECAM table
ET[8]=120,60 9™ point in the ECAM table
ET[9]=40,20 10" point in the ECAM table
ET[10]=0,0 Starting point for next cycle

EB 1 Enable ECAM mode

JGZ=4000 Set Z to jog at 4000

EG 0,0 Engage both X and Y when Master = 0O
BGZ Begin jog on Z axis

#LOOP ; JP#LOOP,V1=0 Loop until the variable is set
EQ2000,2000 Disengage X and Y when Master = 2000
MF,, 2000 Wait until the Master goes to 2000
ST Z Stop the Z axis motion

EB O Exit the ECAM mode

EN End of the program

The above example shows how the ECAM program is structured and how the commands can be given to the
controller. The next page provides the results captured by the WSDK program. This shows how the motion will be
seen during the ECAM cycles. The first graph is for the X axis, the second graph shows the cycle on the Y axis and
the third graph shows the cycle of the Z axis.

DMC-40x0 Chapter 6 Programming Motion e 101

o] I

Three Storage Scopes
File Collection Graph

- First Scope:
- IX jlhctual Posgition j
140 Zoom I Hormal -
?5 Second Scope:
) 500 T 1500 P = IY jlhctual Position j
0 Zoom I INurmaI v|
1h=a Third Scope:
s IE jlhctual Posgition j
a1

Zoom I INurmaI v|
ah 300 1000 1500 000 500
4R Command 5ting:
2 | |
2001
. :Start Collecting;

% 300 100 1500 20 =0 | Done |

Figure 6.12 — Three Storage Scopes

Contour Mode

The DMC-40x0 also provides a contouring mode. This mode allows any arbitrary position curve to be prescribed
for 1 to 8 axes. This is ideal for following computer generated paths such as parabolic, spherical or user-defined
profiles. The path is not limited to straight line and arc segments and the path length may be infinite.

Specifying Contour Segments

The Contour Mode is specified with the command, CM. For example, CMXZ specifies contouring on the X and Z
axes. Any axes that are not being used in the contouring mode may be operated in other modes.

A contour is described by position increments which are described with the command, CD x,y,z,w over a time
interval, DT n. The parameter, n, specifies the time interval. The time interval is defined as 2n sample period (1 ms
for TM1000), where n is a number between 1 and 8. The controller performs linear interpolation between the
specified increments, where one point is generated for each sample. If the time interval changes for each segment,
use CD x,y,z,w=n where n is the new DT value.

Consider, for example, the trajectory shown in Fig. 6.13. The position X may be described by the points:

Point 1 X=0 at T=0ms
Point 2 X=48 at T=4ms
Point 3 X=288 at T=12ms
Point 4 X=336 at T=28ms

The same trajectory may be represented by the increments

Increment 1 DX=48 Time=4 DT=2
Increment 2 DX=240 Time=8 DT=3
Increment 3 DX=48 Time=16 DT=4

102 e Chapter 6 Programming Motion

DMC-40x0

When the controller receives the command to generate a trajectory along these points, it interpolates linearly
between the points. The resulting interpolated points include the position 12 at 1 msec, position 24 at 2 msec, etc.

The programmed commands to specify the above example are:

#A
CMX Specifies X axis for contour mode
CD 48=2 Specifies First position increment and time interval, 2> ms
CD 240=3 Specifies second position increment and time interval, 2° ms
CD 48=4 Specifies the third position increment and time interval, 2* ms
CD 0=0 End Contour buffer
#Wait;JIP#Wait,_ CM<>511 Wait until path is done
EN
POSITION
(COUNTS)
386 [t
288 e .
240 | :
192 -
96 ~ : :
48 e , : : TIME (ms)
i 1 i 1 1 1 i]
0 4 8 12 16 20 24 28
' SEGMENT 1! SEGMENT 2 : SEGMENT 3

Figure 6.13 - The Required Trajectory

Additional Commands

_CM gives the amount of space available in the contour buffer (511 maximum). Zero parameters for DT followed
by zero parameters for CD exit the contour mode.

If no new data record is found and the controller is still in the contour mode, the controller waits for new data. No
new motion commands are generated while waiting. If bad data is received, the controller responds with a ?.

Command Summary - Contour Mode

COMMAND DESCRIPTION

CM XYZW Specifies which axes for contouring mode. Any non-contouring axes may be operated in
other modes.

CM Contour axes for DMC-4080

ABCDEFGH

CD x,y,z,w Specifies position increment over time interval. Range is +/-32,000. CD 0,0,0.. .=0 ends the
contour buffer. This is much like the LE or VE commands.

CDh Position increment data for DMC-4080

a,b,c,d,e,f,g,h

DMC-40x0 Chapter 6 Programming Motion e 103

DTn Specifies time interval 2" sample periods (1 ms for TM1000) for position increment, where
n is an integer between 1 and 8. Zero ends contour mode. If n does not change, it does not
need to be specified with each CD.

_CM Amount of space left in contour buffer (511 maximum)

General Velocity Profiles

The Contour Mode is ideal for generating any arbitrary velocity profiles. The velocity profile can be specified as a
mathematical function or as a collection of points.

The design includes two parts: Generating an array with data points and running the program.

Generating an Array - An Example

Consider the velocity and position profiles shown in Fig. 6.14. The objective is to rotate a motor a distance of 6000
counts in 120 ms. The velocity profile is sinusoidal to reduce the jerk and the system vibration. If we describe the
position displacement in terms of A counts in B milliseconds, we can describe the motion in the following manner:

o =2 (1- cos(27/B))
X =4l - Asin(27/B)

Note: o is the angular velocity;

X is the position; and T is the variable, time, in milliseconds.

In the given example, A=6000 and B=120, the position and velocity profiles are:
X =50T - (6000/27) sin (2n T/120)

Note that the velocity, ®, in count/ms, is

® =501 -cos2n T/120]

Figure 6.14 - Velocity Profile with Sinusoidal Acceleration

The DMC-40x0 can compute trigonometric functions. However, the argument must be expressed in degrees. Using
our example, the equation for X is written as:

X =50T-955sin 3T

A complete program to generate the contour movement in this example is given below. To generate an array, we
compute the position value at intervals of 8 ms. This is stored at the array POS. Then, the difference between the
positions is computed and is stored in the array DIF. Finally the motors are run in the contour mode.

Contour Mode Example

INSTRUCTION

INTERPRETATION

104 e Chapter 6 Programming Motion DMC-40x0

#POINTS

Program defines X points

DM POS[16] Allocate memory

DM DIF[15]

C=0 Set initial conditions, C is index
T=0 T is time in ms

#A

V1=50*T

V2=3*T Argument in degrees
V3=-955*@SIN[V2]+V1 Compute position
V4=@INT[V3] Integer value of V3
POS[C]=V4 Store in array POS

T=T+8

C=C+1

JP #A,C<16

#B Program to find position differences
C=0

#C

D=C+1

DIF[C]=POS[D]-POS[C] Compute the difference and store
C=C+1

JP #C,C<15

#RUN Program to run motor

CMX Contour Mode

DT3 8 millisecond intervals
C=0

#E

CD DIF[C] Contour Distance is in DIF
C=C+1

JP #E,C<15

CD 0=0 End contour buffer
#Wait;JIP#Wait,_CM<>511 Wait until path is done

EN End the program

Teach (Record and Play-Back)

Several applications require teaching the machine a motion trajectory. Teaching can be accomplished using the
DMC-40x0 automatic array capture feature to capture position data. The captured data may then be played back in
the contour mode. The following array commands are used:

DM C[n] Dimension array

RA C[] Specify array for automatic record (up to 4 for DMC-4040)

RD _TPX Specify data for capturing (such as _TPX or _TPZ)

RC n,m Specify capture time interval where n is 2" sample periods (1
ms for TM1000), m is number of records to be captured

RC? or _RC Returns a 1 if recording

Record and Playback Example:
#RECORD Begin Program

DM XPOS[501] Dimension array with 501 elements

DMC-40x0 Chapter 6 Programming Motion e 105

RA XPOS[]

Specify automatic record

RD _TPX Specify X position to be captured

MOX Turn X motor off

RC2 Begin recording; 4 msec interval (at TM1000)
#A;IP#A, _RC=1 Continue until done recording

#COMPUTE Compute DX

DM DX[500] Dimension Array for DX

Cc=0 Initialize counter

#L Label

D=C+1

DELTA=XPOS[D]-XPOS[C]
DX[C]=DELTA

Compute the difference
Store difference in array

C=C+1 Increment index

JP #L,C<500 Repeat until done
#PLAYBCK Begin Playback

CMX Specify contour mode

DT2 Specify time increment
1=0 Initialize array counter
#B Loop counter

CD DX[I1]; 1=1+1 Specify contour data I=1+1 Increment array counter
JP #B, 1<500 Loop until done

CD 0=0 End countour buffer
#Wait;JP#Wait, CM<>511 Wait until path is done
EN End program

For additional information about automatic array capture, see Chapter 7, Arrays.

Virtual Axis

The DMC-40x0 controller has two additional virtual axes designated as the M and N axes. These axes have no
encoder and no DAC. However, they can be commanded by the commands:

AC, DC, JG, SP, PR, PA, BG, IT, GA, WM, VP, CR, ST, DP, RP

The main use of the virtual axes is to serve as a virtual master in ECAM modes, and to perform an unnecessary part
of a vector mode. These applications are illustrated by the following examples.

ECAM Master Example

Suppose that the motion of the XY axes is constrained along a path that can be described by an electronic cam table.
Further assume that the ecam master is not an external encoder but has to be a controlled variable.

This can be achieved by defining the N axis as the master with the command EAN and setting the modulo of the
master with a command such as EMN=4000. Next, the table is constructed. To move the constrained axes, simply
command the N axis in the jog mode or with the PR and PA commands.

For example,
PAN =
BGN

2000

will cause the XY axes to move to the corresponding points on the motion cycle.

Sinusoidal Motion Example

The x axis must perform a sinusoidal motion of 10 cycles with an amplitude of 1000 counts and a frequency of 20
Hz.

106 e Chapter 6 Programming Motion DMC-40x0

This can be performed by commanding the X and N axes to perform circular motion. Note that the value of VS
must be

VS=2x *R * F
where R is the radius, or amplitude and F is the frequency in Hz.

Set VA and VD to maximum values for the fastest acceleration.

INSTRUCTION INTERPRETATION
VMXN Select Axes

VA 68000000 Maximum Acceleration
VD 68000000 Maximum Deceleration
VS 125664 VS for 20 Hz

CR 1000, -90, 3600 Ten Cycles

VE

BGS

Stepper Motor Operation

When configured for stepper motor operation, several commands are interpreted differently than from servo mode.
The following describes operation with stepper motors.

Specifying Stepper Motor Operation
Stepper motor operation is specified by the command MT. The argument for MT is as follows:

2 specifies a stepper motor with active low step output pulses
-2 specifies a stepper motor with active high step output pulses
2.5 specifies a stepper motor with active low step output pulses and reversed direction
-2.5 specifies a stepper motor with active high step output pulse and reversed direction

Stepper Motor Smoothing
The command, KS, provides stepper motor smoothing. The effect of the smoothing can be thought of as a simple
Resistor-Capacitor (single pole) filter. The filter occurs after the motion profiler and has the effect of smoothing out
the spacing of pulses for a more smooth operation of the stepper motor. Use of KS is most applicable when
operating in full step or half step operation. KS will cause the step pulses to be delayed in accordance with the time
constant specified.

When operating with stepper motors, you will always have some amount of stepper motor smoothing, KS. Since
this filtering effect occurs after the profiler, the profiler may be ready for additional moves before all of the step
pulses have gone through the filter. It is important to consider this effect since steps may be lost if the controller is
commanded to generate an additional move before the previous move has been completed. See the discussion

below, Monitoring Generated Pulses vs. Commanded Pulses.

The general motion smoothing command, IT, can also be used. The purpose of the command, IT, is to smooth out
the motion profile and decrease ‘jerk’ due to acceleration.

Monitoring Generated Pulses vs. Commanded Pulses

For proper controller operation, it is necessary to make sure that the controller has completed generating all step
pulses before making additional moves. This is most particularly important if you are moving back and forth. For
example, when operating with servo motors, the trippoint AM (After Motion) is used to determine when the motion
profiler is complete and is prepared to execute a new motion command. However when operating in stepper mode,
the controller may still be generating step pulses when the motion profiler is complete. This is caused by the stepper
motor smoothing filter, KS. To understand this, consider the steps the controller executes to generate step pulses:

DMC-40x0 Chapter 6 Programming Motion e 107

First, the controller generates a motion profile in accordance with the motion commands.

Second, the profiler generates pulses as prescribed by the motion profile. The pulses that are generated by the
motion profiler can be monitored by the command, RP (Reference Position). RP gives the absolute value of the
position as determined by the motion profiler. The command, DP, can be used to set the value of the reference
position. For example, DP 0, defines the reference position of the X axis to be zero.

Third, the output of the motion profiler is filtered by the stepper smoothing filter. This filter adds a delay in the
output of the stepper motor pulses. The amount of delay depends on the parameter which is specified by the
command, KS. As mentioned earlier, there will always be some amount of stepper motor smoothing. The default
value for KS is 1.313 which corresponds to a time constant of 3.939 sample periods.

Fourth, the output of the stepper smoothing filter is buffered and is available for input to the stepper motor driver.
The pulses which are generated by the smoothing filter can be monitored by the command, TD (Tell Dual). TD
gives the absolute value of the position as determined by actual output of the buffer. The command, DP sets the
value of the step count register as well as the value of the reference position. For example, DP 0, defines the
reference position of the X axis to be zero.

Motion Profiler [Stepper Smoothing Filter Output Buffer Output
., (Adds a Delay) [————1 (To Stepper Driver)

Reference Position (RP) Step Count Register (TD)

Motion Complete Trippoint

When used in stepper mode, the MC command will hold up execution of the proceeding commands until the
controller has generated the same number of steps out of the step count register as specified in the commanded
position. The MC trippoint (Motion Complete) is generally more useful than AM trippoint (After Motion) since the
step pulses can be delayed from the commanded position due to stepper motor smoothing.

Using an Encoder with Stepper Motors

An encoder may be used on a stepper motor to check the actual motor position with the commanded position. If an
encoder is used, it must be connected to the main encoder input. Note: The auxiliary encoder is not available while
operating with stepper motors. The position of the encoder can be interrogated by using the command, TP. The
position value can be defined by using the command, DE.

Note: Closed loop operation with a stepper motor is not possible.

Command Summary - Stepper Motor Operation

COMMAND DESCRIPTION

DE Define Encoder Position (When using an encoder)

DP Define Reference Position and Step Count Register

IT Motion Profile Smoothing - Independent Time Constant
KS Stepper Motor Smoothing

MT Motor Type (2,-2,2.5 or -2.5 for stepper motors)

RP Report Commanded Position

TD Report number of step pulses generated by controller
TP Tell Position of Encoder

108 e Chapter 6 Programming Motion DMC-40x0

Operand Summary - Stepper Motor Operation

OPERAND DESCRIPTION

_DEx Contains the value of the step count register for the ‘X’ axis

_DPx Contains the value of the main encoder for the ‘X’ axis

ITx Contains the value of the Independent Time constant for the ‘X’ axis

_KSx Contains the value of the Stepper Motor Smoothing Constant for the ‘x’ axis
_MTx Contains the motor type value for the ‘x’ axis

_RPx Contains the commanded position generated by the profiler for the ‘x” axis
_TDx Contains the value of the step count register for the ‘X’ axis

_TPx Contains the value of the main encoder for the ‘x” axis

Stepper Position Maintenance Mode (SPM)

The Galil controller can be set into the Stepper Position Maintenance (SPM) mode to handle the event of stepper
motor position error. The mode looks at position feedback from the main encoder and compares it to the
commanded step pulses. The position information is used to determine if there is any significant difference between
the commanded and the actual motor positions. If such error is detected, it is updated into a command value for
operator use. In addition, the SPM mode can be used as a method to correct for friction at the end of a
microstepping move. This capability provides closed-loop control at the application program level. SPM mode can
be used with Galil and non-Galil step drives.

SPM mode is configured, executed, and managed with seven commands. This mode also utilizes the #POSERR
automatic subroutine allowing for automatic user-defined handling of an error event.

Internal Controller Commands (user can query):
QS Error Magnitude (pulses)

User Configurable Commands (user can query & change):
OE Profiler Off-On Error
YA Step Drive Resolution (pulses / full motor step)
YB Step Motor Resolution (full motor steps / revolution)

YC Encoder Resolution (counts / revolution)
YR Error Correction (pulses)
YS Stepper Position Maintenance enable, status

A pulse is defined by the resolution of the step drive being used. Therefore, one pulse could be a full step, a half
step or a microstep.

When a Galil controller is configured for step motor operation, the step pulse output by the controller is internally
fed back to the auxiliary encoder register. For SPM the feedback encoder on the stepper will connect to the main
encoder port. Enabling the SPM mode on a controller with YS=1 executes an internal monitoring of the auxiliary
and main encoder registers for that axis or axes. Position error is then tracked in step pulses between these two
registers (QS command).

TPxYAxYB

S=TD -
Q YC

DMC-40x0 Chapter 6 Programming Motion e 109

Where TD is the auxiliary encoder register(step pulses) and TP is the main encoder register(feedback encoder).
Additionally, YA defines the step drive resolution where YA = 1 for full stepping or YA = 2 for half stepping. The
full range of YA is up to YA = 9999 for microstepping drives.

Error Limit

The value of QS is internally monitored to determine if it exceeds a preset limit of three full motor steps. Once the
value of QS exceeds this limit, the controller then performs the following actions:

1. The motion is maintained or is stopped, depending on the setting of the OE command. If OE=0 the axis
stays in motion, if OE=1 the axis is stopped.

2. YSis set to 2, which causes the automatic subroutine labeled #POSERR to be executed.

Correction

A correction move can be commanded by assigning the value of QS to the YR correction move command. The
correction move is issued only after the axis has been stopped. After an error correction move has completed and
QS is less than three full motor steps, the Y'S error status bit is automatically reset back to 1; indicating a cleared
error.

Example: SPM Mode Setup

The following code demonstrates what is necessary to set up SPM mode for a full step drive, a half step drive, and a
1/64th microstepping drive for an axis with a 1.8° step motor and 4000 count/rev encoder. Note the necessary
difference is with the YA command.

Full-Stepping Drive, X axis:

#SETUP

OE1l; Set the profiler to stop axis upon error
KS16; Set step smoothing

MT-2; Motor type set to stepper

YAL; Step resolution of the full-step drive
YB200; Motor resolution (full steps per revolution)
YC4000; Encoder resolution (counts per revolution)
SHX; Enable axis

WT50; Allow slight settle time

YS1; Enable SPM mode

Half-Stepping Drive, X axis:

#SETUP

OE1l; Set the profiler to stop axis upon error
KS16; Set step smoothing

MT-2; Motor type set to stepper

YA2; Step resolution of the half-step drive
YB200; Motor resolution (full steps per revolution)
YC4000; Encoder resolution (counts per revolution)
SHX; Enable axis

WT50; Allow slight settle time

YS1; Enable SPM mode

110 e Chapter 6 Programming Motion DMC-40x0

1/64™ Step Microstepping Drive, X axis:

#SETUP

OE1l; Set the profiler to stop axis upon error
KS16; Set step smoothing

MT-2; Motor type set to stepper

YA64; Step resolution of the microstepping drive
YB200; Motor resolution (full steps per revolution)
YC4000; Encoder resolution (counts per revolution)
SHX; Enable axis

WT50; Allow slight settle time

YS1; Enable SPM mode

Example: Error Correction

The following code demonstrates what is necessary to set up SPM mode for the X axis, detect error, stop the motor,
correct the error, and return to the main code. The drive is a full step drive, with a 1.8° step motor and 4000
count/rev encoder.

#SETUP

OE1l; Set the profiler to stop axis upon error
KS16; Set step smoothing

MT-2,-2,-2,-2; Motor type set to stepper

YA2; Step resolution of the drive

YB200; Motor resolution (full steps per revolution)
YC4000; Encoder resolution (counts per revolution)
SHX; Enable axis

WT100; Allow slight settle time

#MOTION Perform motion

SP512; Set the speed

PR1000; Prepare mode of motion

BGX; Begin motion

#LOOP ; JP#LOOP; Keep thread zero alive for #POSERR to run in

REM When error occurs, the axis will stop due to OE1. In
REM #POSERR, query the status YS and the error QS, correct,
REM and return to the main code.

#POSERR; Automatic subroutine is called when YS=2
WT100; Wait helps user see the correction
spsave=_SPX; Save current speed setting

JP#RETURN, _YSX<>2; Return to thread zero if invalid error
SP64; Set slow speed setting for correction
MG"ERROR= ", QSX

YRX=_QSX; Else, error is valid, use QS for correction
MCX; Wait for motion to complete

MG"CORRECTED, ERROR NOW= ", QSX

WT100; Wait helps user see the correction

DMC-40x0 Chapter 6 Programming Motion e 111

#RETURN
SPX=spsave; Return the speed to previous setting
REO; Return from #POSERR

Example: Friction Correction

The following example illustrates how the SPM mode can be useful in correcting for X axis friction after each move
when conducting a reciprocating motion. The drive is a 1/64th microstepping drive with a 1.8° step motor and 4000
count/rev encoder.

#SETUP; Set the profiler to continue upon error
KS16; Set step smoothing

MT-2,-2,-2,-2; Motor type set to stepper

YA64; Step resolution of the microstepping drive
YB200; Motor resolution (full steps per revolution)
YC4000; Encoder resolution (counts per revolution)
SHX; Enable axis

WT50; Allow slight settle time

YS1; Enable SPM mode

#MOTION; Perform motion

SP16384; Set the speed

PR10000; Prepare mode of motion

BGX; Begin motion

MCX

JS#CORRECT ; Move to correction

#MOTION2

SP16384; Set the speed

PR-10000; Prepare mode of motion

BGX; Begin motion

MCX

JS#CORRECT; Move to correction

JP#MOTION

#CORRECT ; Correction code

spx=_SPX

#LOOP; Save speed value

SP2048; Set a new slow correction speed

WT100; Stabilize

JP#END, @ABS[_QSX]<10; End correction if error is within defined tolerance
YRX=_QSX; Correction move

MCX

WT100; Stabilize

JP#LOOP; Keep correcting until error is within tolerance
#END; End #CORRECT subroutine, returning to code
SPX=spx

EN

Dual Loop (Auxiliary Encoder)

The DMC-40x0 provides an interface for a second encoder for each axis except for axes configured for stepper
motor operation and axis used in circular compare. When used, the second encoder is typically mounted on the

112 e Chapter 6 Programming Motion DMC-40x0

motor or the load, but may be mounted in any position. The most common use for the second encoder is backlash
compensation, described below.

The second encoder may be a standard quadrature type, or it may provide pulse and direction. The controller also
offers the provision for inverting the direction of the encoder rotation. The main and the auxiliary encoders are
configured with the CE command. The command form is CE x,y,z,w (or a,b,c,d,e.f,g,h for controllers with more
than 4 axes) where the parameters x,y,z,w each equal the sum of two integers m and n. m configures the main
encoder and n configures the auxiliary encoder.

Using the CE Command

m= | Main Encoder n= | Second Encoder

0 Normal quadrature 0 Normal quadrature

1 Pulse & direction 4 Pulse & direction

2 Reverse quadrature 8 Reversed quadrature

3 Reverse pulse & direction 12 Reversed pulse & direction

For example, to configure the main encoder for reversed quadrature, m=2, and a second encoder of pulse and
direction, n=4, the total is 6, and the command for the X axis is:

CE 6

Additional Commands for the Auxiliary Encoder
The command, DE x,y,z,w, can be used to define the position of the auxiliary encoders. For example,
DE 0,500,-30,300

sets their initial values. The positions of the auxiliary encoders may be interrogated with the command, DE?. For
example:

DE ?,,7?

returns the value of the X and Z auxiliary encoders.

The auxiliary encoder position may be assigned to variables with the instructions
V1= _DEX

The command, TD XYZW, returns the current position of the auxiliary encoder.

The command, DV 1,1,1,1, configures the auxiliary encoder to be used for backlash compensation.

Backlash Compensation

There are two methods for backlash compensation using the auxiliary encoders:
1. Continuous dual loop
2. Sampled dual loop

To illustrate the problem, consider a situation in which the coupling between the motor and the load has a backlash.
To compensate for the backlash, position encoders are mounted on both the motor and the load.

The continuous dual loop combines the two feedback signals to achieve stability. This method requires careful
system tuning, and depends on the magnitude of the backlash. However, once successful, this method compensates
for the backlash continuously.

The second method, the sampled dual loop, reads the load encoder only at the end point and performs a correction.
This method is independent of the size of the backlash. However, it is effective only in point-to-point motion
systems which require position accuracy only at the endpoint.

DMC-40x0 Chapter 6 Programming Motion 113

Continuous Dual Loop - Example

Connect the load encoder to the main encoder port and connect the motor encoder to the dual encoder port. The
dual loop method splits the filter function between the two encoders. It applies the KP (proportional) and KI
(integral) terms to the position error, based on the load encoder, and applies the KD (derivative) term to the motor
encoder. This method results in a stable system.

The dual loop method is activated with the instruction DV (Dual Velocity), where
DV 1,1,1,1

activates the dual loop for the four axes and
DV 0,0,0,0

disables the dual loop.

Note: that the dual loop compensation depends on the backlash magnitude, and in extreme cases will not stabilize
the loop. The proposed compensation procedure is to start with KP=0, KI=0 and to maximize the value of KD under
the condition DV1. Once KD is found, increase KP gradually to a maximum value, and finally, increase KI, if
necessary.

Sampled Dual Loop - Example

In this example, we consider a linear slide which is run by a rotary motor via a lead screw. Since the lead screw has
a backlash, it is necessary to use a linear encoder to monitor the position of the slide. For stability reasons, it is best
to use a rotary encoder on the motor.

Connect the rotary encoder to the X-axis and connect the linear encoder to the auxiliary encoder of X. Assume that
the required motion distance is one inch, and that this corresponds to 40,000 counts of the rotary encoder and 10,000
counts of the linear encoder.

The design approach is to drive the motor a distance, which corresponds to 40,000 rotary counts. Once the motion is
complete, the controller monitors the position of the linear encoder and performs position corrections.

This is done by the following program.

INSTRUCTION INTERPRETATION
#DUALOOP Label

CE O Configure encoder

DEO Set initial value

PR 40000 Main move

BGX Start motion

#Correct Correction loop

AMX Wait for motion completion

V1=10000-_DEX
V2=— TEX/4+V1

Find linear encoder error
Compensate for motor error

JP#END, @ABS[V2]<2 Exit if error is small
PR V2*4 Correction move

BGX Start correction
JP#CORRECT Repeat

#END

EN

Motion Smoothing

The DMC-40x0 controller allows the smoothing of the velocity profile to reduce the mechanical vibration of the

system.

114 e Chapter 6 Programming Motion

DMC-40x0

Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to maximum value. The
discontinuous acceleration results in jerk which causes vibration. The smoothing of the acceleration profile leads to
a continuous acceleration profile and reduces the mechanical shock and vibration.

Using the IT Command:

@ When operating with servo motors, motion smoothing can be accomplished with the IT command.
This command filters the acceleration and deceleration functions to produce a smooth velocity profile.
The resulting velocity profile, has continuous acceleration and results in reduced mechanical
vibrations.

The smoothing function is specified by the following commands:

IT x,y,z,w Independent time constant

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and to smooth vector moves of
the type VM and LM.

The smoothing parameters, X,y,z,w and n are numbers between 0 and 1 and determine the degree of filtering. The
maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles. Smaller values of the smoothing
parameters imply heavier filtering and smoother moves.

The following example illustrates the effect of smoothing. Fig. 6.15 shows the trapezoidal velocity profile and the
modified acceleration and velocity.

Note that the smoothing process results in longer motion time.

Example - Smoothing

PR 20000 Position

AC 100000 Acceleration

DC 100000 Deceleration

SP 5000 Speed

IT .5 Filter for smoothing
BG X Begin

DMC-40x0 Chapter 6 Programming Motion e 115

ACCELERATION

No smoothing

VELOCITY

ACCELERATION

After profile smoothing

N

VELOCITY

Figure 6.15 - Trapezoidal velocity and smooth velocity profiles

Using the KS Command (Step Motor Smoothing):

E When operating with step motors, motion smoothing can be accomplished with the command, KS.
The KS command smoothes the frequency of step motor pulses. Similar to the command IT, this
produces a smooth velocity profile.

The step motor smoothing is specified by the following command:

KS x,y,z,w where x,y,z,w is an integer from 0.25 to 64 and represents the amount of
smoothing

The smoothing parameters, X,y,z,w and n are numbers between 0.25 and 64 and determine the degree of filtering.
The minimum value of 0.25 implies no filtering, resulting in trapezoidal velocity profiles. Larger values of the
smoothing parameters imply heavier filtering and smoother moves.

Note that KS is valid only for step motors.

Homing

The Find Edge (FE) and Home (HM) instructions may be used to home the motor to a mechanical reference. This
reference is connected to the Home input line. The HM command initializes the motor to the encoder index pulse in
addition to the Home input. The configure command (CN) is used to define the polarity of the home input.

116 e Chapter 6 Programming Motion DMC-40x0

The Find Edge (FE) instruction is useful for initializing the motor to a home switch. The home switch is connected
to the Homing Input. When the Find Edge command and Begin is used, the motor will accelerate up to the slew
speed and slew until a transition is detected on the Homing line. The motor will then decelerate to a stop. A high
deceleration value must be input before the find edge command is issued for the motor to decelerate rapidly after
sensing the home switch. The Home (HM) command can be used to position the motor on the index pulse after the
home switch is detected. This allows for finer positioning on initialization. The HM command and BG command
causes the following sequence of events to occur.

Stage 1:

Upon begin, the motor accelerates to the slew speed specified by the JG or SP commands. The direction of its
motion is determined by the state of the homing input. If HMX reads 1 initially, the motor will go in the reverse
direction first (direction of decreasing encoder counts). If HMX reads 0 initially, the motor will go in the forward
direction first. CN is the command used to define the polarity of the home input. With CN,-1 (the default value) a
normally open switch will make HMX read 1 initially, and a normally closed switch will make HMX read zero.
Furthermore, with CN,1 a normally open switch will make HMX read 0 initially, and a normally closed switch will
make HMX read 1. Therefore, the CN command will need to be configured properly to ensure the correct direction
of motion in the home sequence.

Upon detecting the home switch changing state, the motor begins decelerating to a stop.

Note: The direction of motion for the FE command also follows these rules for the state of the home input.

Stage 2:

The motor then traverses at HV counts/sec in the opposite direction of Stage 1 until the home switch toggles again.
If Stage 3 is in the opposite direction of Stage 2, the motor will stop immediately at this point and change direction.
If Stage 2 is in the same direction as Stage 3, the motor will never stop, but will smoothly continue into Stage 3.

Stage 3:

The motor traverses forward at HV counts/sec until the encoder index pulse is detected. The motor then decelerates
to a stop and goes back to the index.

The DMC-40x0 defines the home position as the position at which the index was detected and sets the encoder
reading at this point to zero.

The 4 different motion possibilities for the home sequence are shown in the following table.

Direction of Motion
Switch Type CN Setting Initial HMX state Stage 1 Stage 2 Stage 3
Normally Open CN,-1 1 Reverse Forward Forward
Normally Open CN,1 0 Forward Reverse Forward
Normally Closed | CN,-1 0 Forward Reverse Forward
Normally Closed | CN,1 1 Reverse Forward Forward

Example: Homing

Instruction Interpretation

#HOME Label

CN,-1 Configure the polarity of the home input
AC 1000000 Acceleration Rate

DMC-40x0 Chapter 6 Programming Motion e 117

DC 1000000 Deceleration Rate

SP 5000 Speed for Home Search
HM Home

BG Begin Motion

AM After Complete

MG “AT HOME” Send Message

EN End

Figure 6.16 shows the velocity profile from the homing sequence of the example program above. For this profile,
the switch is normally closed and CN,-1.

HOME
SWITCH

_HMX=0 _HMX=1

POSITION

VELOCITY

MOTION
BEGINS IN
FORWARD
DIRECTION

—

POSITION

VELOCITY

MOTION
CHANGES
DIRECTION

< POSITION

VELOCITY

MOTION IN
FORWARD
DIRECTION
TOWARD
INDEX

S

INDEX PULSES

POSITION

Figure 6.16 — Homing Sequence for Normally Closed Switch and CN,-1

118 e Chapter 6 Programming Motion DMC-40x0

Example: Find Edge

#EDGE

AC 2000000
DC 2000000

SP 8000
FE
BG
AM

MG “FOUND HOME”

DP O
EN

Label

Acceleration rate
Deceleration rate
Speed

Find edge command
Begin motion

After complete

Send message

Define position as 0
End

Command Summary - Homing Operation

command

description

FE XYZW

Find Edge Routine. This routine monitors the Home Input

FIXYZW

Find Index Routine - This routine monitors the Index Input

HM XYZW

Home Routine - This routine combines FE and FI as Described Above

SC XYZW

Stop Code

TS XYZW

Tell Status of Switches and Inputs

Operand Summary - Homing Operation

operand

Description

~HMx

Contains the value of the state of the Home Input

_SCx

Contains stop code

_TSx

Contains status of switches and inputs

High Speed Position Capture (The Latch Function)

Often it is desirable to capture the position precisely for registration applications. The DMC-40x0 provides a
position latch feature. This feature allows the position of the main or auxiliary encoders of X,Y,Z or W to be
captured within 25 microseconds of an external low input signal (or index pulse). The general inputs 1 through 4
and 9 thru 12 correspond to each axis.

1 through 4:
IN1 X-axis latch
IN2 Y-axis latch
IN3 Z-axis latch
IN4 W-axis latch

9 through 12

IN9 E-axis latch
IN10 F-axis latch
IN11 G-axis latch
IN12 H-axis latch

Note: To insure a position capture within 25 microseconds, the input signal must be a transition from high to low.

The DMC-40x0 software commands, AL and RL, are used to arm the latch and report the latched position. The
steps to use the latch are as follows:

DMC-40x0

Chapter 6 Programming Motion e 119

1. Give the AL XYZW command or ABCDEFGH for DMC-4080, to arm the latch for the main encoder and
ALSXSYSZSW for the auxiliary encoders.

2. Test to see if the latch has occurred (Input goes low) by using the AL X or Y or Z or W command.
Example, V1= ALX returns the state of the X latch into V1. V1 is 1 if the latch has not occurred.

3. After the latch has occurred, read the captured position with the RL XYZW command or RL XYZW.

Note: The latch must be re-armed after each latching event.

Example:
#Latch Latch program
JG, 5000 Jog Y
BG Y Begin motion on Y axis
AL Y Arm Latch for Y axis
#Wait #Wait label for loop
JP #Wait, ALY=1 Jump to #Wait label if latch has not occurred
Result=_RLY Set value of variable “Result’ equal to the report position of y axis
Result= Print result
EN End

120 e Chapter 6 Programming Motion DMC-40x0

Fast Update Rate Mode

The DMC-40x0 can operate with much faster servo update rates than the default of every millisecond. This mode is
known as ‘fast mode’ and allows the controller to operate with the following update rates:

DMC-4010
DMC-4020
DMC-4030
DMC-4040
DMC-4050
DMC-4060
DMC-4070
DMC-4080

31.25 psec
31.25 psec
62.5 psec
62.5 usec
93.75 psec
93.75 usec
125 psec
125 psec

In order to run the DMC-40x0 motion controller in fast mode, the fast firmware must be uploaded. This can be done
through the Galil terminal software such as DMCTERM and WSDK. The fast firmware is included with the

original DMC-40x0 utilities.

In order to set the desired update rates, use the command TM.

When the controller is operating with the fast firmware, the following functions are disabled:

Gearing mode

Ecam mode

Pole (PL)

Analog Feedback (AF)

Stepper Motor Operation (MT 2,-2,2.5,-2.5)

Trippoints in thread 2-8

Tell Velocity Interrogation Command (TV)

Aux Encoders (TD)

Dual Velocity (DV)

Peak Torque Limit (TK)
Notch Filter (NB, NF, NZ)

DMC-40x0

Chapter 6 Programming Motion e 121

Chapter 7 Application Programming

Overview

The DMC-40x0 provides a powerful programming language that allows users to customize the controller for their
particular application. Programs can be downloaded into the DMC-40x0 memory freeing the host computer for
other tasks. However, the host computer can send commands to the controller at any time, even while a program is
being executed. Only ASCII commands can be used for application programming.

In addition to standard motion commands, the DMC-40x0 provides commands that allow the DMC-40x0 to make its
own decisions. These commands include conditional jumps, event triggers and subroutines. For example, the
command JP#LOOP, n<10 causes a jump to the label #LOOP if the variable n is less than 10.

For greater programming flexibility, the DMC-40x0 provides user-defined variables, arrays and arithmetic
functions. For example, with a cut-to-length operation, the length can be specified as a variable in a program which
the operator can change as necessary.

The following sections in this chapter discuss all aspects of creating applications programs. The program memory
size is 80 characters x 2000 lines.

Using the DMC-40x0 Editor to Enter Programs

Galil’s SmartTerminal and WSDK software provide an editor and UPLOAD and DOWNLOAD utilities.
Application programs for the DMC-40x0 may also be created and edited locally using the DMC-40x0.

The DMC-40x0 provides a line Editor for entering and modifying programs. The Edit mode is entered with the ED
instruction. (Note: The ED command can only be given when the controller is in the non-edit mode, which is
signified by a colon prompt).

In the Edit Mode, each program line is automatically numbered sequentially starting with 000. If no parameter
follows the ED command, the editor prompter will default to the last line of the last program in memory. If desired,
the user can edit a specific line number or label by specifying a line number or label following ED.

ED Puts Editor at end of last program
:ED 5 Puts Editor at line 5
:ED #BEGIN Puts Editor at label #BEGIN

Line numbers appear as 000,001,002 and so on. Program commands are entered following the line numbers.
Multiple commands may be given on a single line as long as the total number of characters doesn’t exceed 80
characters per line.

While in the Edit Mode, the programmer has access to special instructions for saving, inserting and deleting program
lines. These special instructions are listed below:

Edit Mode Commands
<RETURN>

122 e Chapter 7 Application Programming DMC-40x0

Typing the return key causes the current line of entered instructions to be saved. The editor will automatically
advance to the next line. Thus, hitting a series of <RETURN> will cause the editor to advance a series of lines.
Note, changes on a program line will not be saved unless a <return> is given.

<cntrl>P
The <cntrl>P command moves the editor to the previous line.
<cntrl>]

The <cntrl>I command inserts a line above the current line. For example, if the editor is at line number 2 and
<cntrl>I is applied, a new line will be inserted between lines 1 and 2. This new line will be labeled line 2. The old
line number 2 is renumbered as line 3.

<cntrl>D

The <cntrl>D command deletes the line currently being edited. For example, if the editor is at line number 2 and
<cntrl>D is applied, line 2 will be deleted. The previous line number 3 is now renumbered as line number 2.

<cntrl>Q
The <cntr>Q quits the editor mode. In response, the DMC-40x0 will return a colon.

After the Edit session is over, the user may list the entered program using the LS command. If no operand follows
the LS command, the entire program will be listed. The user can start listing at a specific line or label using the
operand n. A command and new line number or label following the start listing operand specifies the location at
which listing is to stop.

Example:
Instruction Interpretation
:LS List entire program
LS 5 Begin listing at line 5
:LS 5,9 List lines 5 thru 9
:LS #A,9 List line label #A thru line 9
LS #A, #A +5 List line label #A and additional 5 lines

Program Format

A DMC-40x0 program consists of DMC instructions combined to solve a machine control application. Action
instructions, such as starting and stopping motion, are combined with Program Flow instructions to form the
complete program. Program Flow instructions evaluate real-time conditions, such as elapsed time or motion
complete, and alter program flow accordingly.

Each DMC-40x0 instruction in a program must be separated by a delimiter. Valid delimiters are the semicolon (;) or
carriage return. The semicolon is used to separate multiple instructions on a single program line where the
maximum number of instructions on a line is limited by 80 characters. A carriage return enters the final command
on a program line.

Using Labels in Programs

All DMC-40x0 programs must begin with a label and end with an End (EN) statement. Labels start with the pound
(#) sign followed by a maximum of seven characters. The first character must be a letter; after that, numbers are
permitted. Spaces are not permitted.

The maximum number of labels which may be defined is 510.

Valid labels
#BEGIN
#SQUARE
#X1

DMC-40x0 Chapter 7 Application Programming e 123

#BEGIN1

Invalid labels
#1Square
#123

A Simple Example Program:
#START
PR 10000,20000
BG XY
AM
WT 2000
JP #START
EN

Beginning of the Program

Specify relative distances on X and Y axes
Begin Motion

Wait for motion complete

Wait 2 sec

Jump to label START

End of Program

The above program moves X and Y 10000 and 20000 units. After the motion is complete, the motors rest for 2
seconds. The cycle repeats indefinitely until the stop command is issued.

Special Labels

The DMC-40x0 have some special labels, which are used to define input interrupt subroutines, limit switch
subroutines, error handling subroutines, and command error subroutines. See section on Auto-Start Routine

The DMC-40x0 has a special label for automatic program execution. A program which has been saved into the
controller’s non-volatile memory can be automatically executed upon power up or reset by beginning the program
with the label #AUTO. The program must be saved into non-volatile memory using the command, BP.

Automatic Subroutines for Monitoring Conditions

#ININT
#LIMSWI
#POSERR
#MCTIME
#CMDERR

Commenting Programs

Label for Input Interrupt subroutine

Label for Limit Switch subroutine

Label for excess Position Error subroutine

Label for timeout on Motion Complete trip point

Label for incorrect command subroutine

Using the command, NO or Apostrophe (*)

The DMC-40x0 provides a command, NO, for commenting programs or single apostrophe. This command allows
the user to include up to 78 characters on a single line after the NO command and can be used to include comments

from the programmer as in the following example:
#PATH
* 2-D CIRCULAR PATH
VMXY
‘ VECTOR MOTION ON X AND Y
VS 10000
‘ VECTOR SPEED IS 10000
VP -4000,0
BOTTOM LINE
CR 1500,270,-180
‘ HALF CIRCLE MOTION
VP 0,3000
TOP LINE

124 e Chapter 7 Application Programming

DMC-40x0

CR 1500,90,-180
‘ HALF CIRCLE MOTION
VE
‘ END VECTOR SEQUENCE
BGS

BEGIN SEQUENCE MOTION
EN
' END OF PROGRAM

Note: The NO command is an actual controller command. Therefore, inclusion of the NO commands will require
process time by the controller.

Executing Programs - Multitasking

The DMC-40x0 can run up to 8 independent programs simultaneously. These programs are called threads and are
numbered 0 through 7, where 0 is the main thread. Multitasking is useful for executing independent operations such
as PLC functions that occur independently of motion.

The main thread differs from the others in the following ways:
1. Only the main thread, thread 0, may use the input command, IN.

2. When input interrupts are implemented for limit switches, position errors or command errors, the
subroutines are executed as thread 0.

To begin execution of the various programs, use the following instruction:
XQ #A, n
Where n indicates the thread number. To halt the execution of any thread, use the instruction

HX n
where n is the thread number.
Note that both the XQ and HX commands can be performed by an executing program.

The example below produces a waveform on Output 1 independent of a move.

#TASK1 Taskl label

ATO Initialize reference time

CB1 Clear Output 1

#LOOP1 Loopl label

AT 10 Wait 10 msec from reference time
SB1 Set Output 1

AT -40 Wait 40 msec from reference time, then initialize reference
CB1 Clear Output 1

JP #LOOP1 Repeat Loopl

#TASK2 Task2 label

XQ #TASK1,1 Execute Taskl

#LOOP2 Loop2 label

PR 1000 Define relative distance

BGX Begin motion

AMX After motion done

WT 10 Wait 10 msec

JP #LOOP2,@IN[2]=1

HX

Repeat motion unless Input 2 is low
Halt all tasks

DMC-40x0

Chapter 7 Application Programming e 125

The program above is executed with the instruction XQ #TASK2,0 which designates TASK?2 as the main thread (i.e.
Thread 0). #TASK1 is executed within TASK?2.

Debugging Programs

The DMC-40x0 provides commands and operands which are useful in debugging application programs. These
commands include interrogation commands to monitor program execution, determine the state of the controller and
the contents of the controllers program, array, and variable space. Operands also contain important status
information which can help to debug a program.

Trace Commands

The trace command causes the controller to send each line in a program to the host computer immediately prior to
execution. Tracing is enabled with the command, TR1. TRO turns the trace function off. Note: When the trace
function is enabled, the line numbers as well as the command line will be displayed as each command line is
executed.

NOTE: When the trace function is enabled, the line numbers as well as the command line will be displayed as each
command line is executed.

Data which is output from the controller is stored in the output UART. The UART buffer can store up to 512
characters of information. In normal operation, the controller places output into the FIFO buffer. When the trace
mode is enabled, the controller will send information to the UART buffer at a very high rate. In general, the UART
will become full because the hardware handshake line will halt serial data until the correct data is read. When the
UART becomes full, program execution will be delayed until it is cleared. If the user wants to avoid this delay, the
command CW,1 can be given. This command causes the controller to throw away the data which can not be placed
into the FIFO. In this case, the controller does not delay program execution.

Error Code Command

When there is a program error, the DMC-40x0 halts the program execution at the point where the error occurs. To
display the last line number of program execution, issue the command, MG _ED.

The user can obtain information about the type of error condition that occurred by using the command, TC1. This
command reports back a number and a text message which describes the error condition. The command, TCO or
TC, will return the error code without the text message. For more information about the command, TC, see the
Command Reference.

Stop Code Command

The status of motion for each axis can be determined by using the stop code command, SC. This can be useful when
motion on an axis has stopped unexpectedly. The command SC will return a number representing the motion status.
See the command reference for further information.

RAM Memory Interrogation Commands

For debugging the status of the program memory, array memory, or variable memory, the DMC-40x0 has several
useful commands. The command, DM ?, will return the number of array elements currently available. The
command, DA ?, will return the number of arrays which can be currently defined. For example, a standard DMC-
14010 will have a maximum of 16000 array elements in up to 30 arrays. If an array of 100 elements is defined, the
command DM ? will return the value 15900 and the command DA ? will return 29.

To list the contents of the variable space, use the interrogation command LV (List Variables). To list the contents of
array space, use the interrogation command, LA (List Arrays). To list the contents of the Program space, use the
interrogation command, LS (List). To list the application program labels only, use the interrogation command, LL
(List Labels).

126 e Chapter 7 Application Programming DMC-40x0

Operands

In general, all operands provide information which may be useful in debugging an application program. Below is a
list of operands which are particularly valuable for program debugging. To display the value of an operand, the
message command may be used. For example, since the operand, ED contains the last line of program execution,
the command MG _ED will display this line number.

_ED contains the last line of program execution. Useful to determine where program stopped.
_DL contains the number of available labels.

_UL contains the number of available variables.

_DA contains the number of available arrays.

_ DM contains the number of available array elements.

_AB contains the state of the Abort Input

_LFx contains the state of the forward limit switch for the ‘x’ axis

_LRx contains the state of the reverse limit switch for the ‘x’ axis

Debugging Example:

The following program has an error. It attempts to specify a relative movement while the X-axis is already in
motion. When the program is executed, the controller stops at line 003. The user can then query the controller
using the command, TC1. The controller responds with the corresponding explanation:

“ED

000 #A

001 PR1000
002 BGX

003 PR5000
004 EN
<cntrl> Q
IXQ #A

7003 PR5000
:TC1

?7 Command not valid
while running.

ED 3

003 AMX;PR5000;BGX
<cntrl> Q

IXQ #A

Edit Mode

Program Label

Position Relative 1000
Begin

Position Relative 5000
End

Quit Edit Mode

Execute #A

Error on Line 3

Tell Error Code
Command not valid while running

Edit Line 3

Add After Motion Done
Quit Edit Mode
Execute #A

Program Flow Commands

The DMC-40x0 provides instructions to control program flow. The controller program sequencer normally executes
program instructions sequentially. The program flow can be altered with the use of event triggers, trippoints, and

conditional jump statements.

Event Triggers & Trippoints

To function independently from the host computer, the DMC-40x0 can be programmed to make decisions based on
the occurrence of an event. Such events include waiting for motion to be complete, waiting for a specified amount
of time to elapse, or waiting for an input to change logic levels.

DMC-40x0

Chapter 7 Application Programming e 127

The DMC-40x0 provides several event triggers that cause the program sequencer to halt until the specified event
occurs. Normally, a program is automatically executed sequentially one line at a time. When an event trigger
instruction is decoded, however, the actual program sequence is halted. The program sequence does not continue
until the event trigger is “tripped”. For example, the motion complete trigger can be used to separate two move
sequences in a program. The commands for the second move sequence will not be executed until the motion is
complete on the first motion sequence. In this way, the controller can make decisions based on its own status or

external events without intervention from a host computer.

DMC-40x0 Event Triggers

Command

Function

AMXYZWorS
(ABCDEFGH)

Halts program execution until motion is complete on
the specified axes or motion sequence(s). AM with no
parameter tests for motion complete on all axes. This
command is useful for separating motion sequences in
a program.

ADXorYorZorW
(AorBorCorDorE orF or Gor H)

Halts program execution until position command has
reached the specified relative distance from the start of
the move. Only one axis may be specified at a time.

AR XorY orZorW
(AorBorCorDorE orF or GorH)

Halts program execution until after specified distance
from the last AR or AD command has elapsed. Only
one axis may be specified at a time.

(AorBorCorDorE orF or Gor H)

AP XorYorZorW Halts program execution until after absolute position
(AorBorCorDorEorF orG or H) occurs. Only one axis may be specified at a time.
MF X orY orZ or W Halt program execution until after forward motion

reached absolute position. Only one axis may be
specified. If position is already past the point, then
MF will trip immediately. Will function on geared
axis or aux. inputs.

MR XorY orZorW
(AorBorCorDorEorF or G or H)

Halt program execution until after reverse motion
reached absolute position. Only one axis may be
specified. If position is already past the point, then
MR will trip immediately. Will function on geared
axis or aux. inputs.

MCXorY orZorW
(AorBorCorDorEorF or GorH)

Halt program execution until after the motion profile
has been completed and the encoder has entered or
passed the specified position. TW Xx,y,z,w sets
timeout to declare an error if not in position. If
timeout occurs, then the trippoint will clear and the
stop code will be set to 99. An application program
will jump to label #MCTIME.

Al+/-n

Halts program execution until after specified input is
at specified logic level. n specifies input line.
Positive is high logic level, negative is low level. n=1
through 8 for DMC-4010, 4020, 4030, 4040. n=1
through 16 for DMC-4050, 4060, 4070, 4080

Also n=17-48

ASXYZWS
(ABCDEFGH)

Halts program execution until specified axis has
reached its slew speed.

AT +/-n

Halts program execution until n msec from reference
time. AT 0 sets reference. AT n waits n msec from
reference. AT -n waits n msec from reference and sets
new reference after elapsed time.

128 e Chapter 7 Application Programming

DMC-40x0

AV n Halts program execution until specified distance along
a coordinated path has occurred.

WTn Halts program execution until specified time in msec
has elapsed.

Event Trigger Examples:

Event Trigger - Multiple Move Sequence

The AM trippoint is used to separate the two PR moves. If AM is not used, the controller returns a ? for the second
PR command because a new PR cannot be given until motion is complete.

#TWOMOVE
PR 2000

BGX

AMX

PR 4000

BGX

EN

Label

Position Command

Begin Motion

Wait for Motion Complete
Next Position Move

Begin 2™ move

End program

Event Trigger - Set Output after Distance

Set output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the trippoint is the speed

multiplied by the sample period.

#SETBIT

SP 10000

PA 20000

BGX

AD 1000

SB1

EN

Label

Speed is 10000

Specify Absolute position
Begin motion

Wait until 1000 counts
Set output bit 1

End program

Event Trigger - Repetitive Position Trigger

To set the output bit every 10000 counts during a move, the AR trippoint is used as shown in the next example.

#TRIP

JG 50000
BGX;n=0
H#REPEAT
AR 10000
TPX

SB1

WT50

CB1
n=n+1

JP #REPEAT,n<5
STX

EN

Label

Specify Jog Speed
Begin Motion

Repeat Loop
Wait 10000 counts
Tell Position

Set output 1

Wait 50 msec
Clear output 1
Increment counter
Repeat 5 times
Stop

End

DMC-40x0

Chapter 7 Application Programming e 129

Event Trigger - Start Motion on Input

This example waits for input 1 to go low and then starts motion. Note: The Al command actually halts execution of
the program until the input occurs. If you do not want to halt the program sequences, you can use the Input Interrupt
function (II) or use a conditional jump on an input, such as IP#GO,@IN[1] = 1.

#INPUT Program Label

Al-1 Wait for input 1 low
PR 10000 Position command

BGX Begin motion

EN End program

Event Trigger - Set output when At speed

#ATSPEED Program Label
JG 50000 Specify jog speed
AC 10000 Acceleration rate
BGX Begin motion
ASX Wait for at slew speed 50000
SB1 Set output 1
EN End program

Event Trigger - Change Speed along Vector Path

The following program changes the feed rate or vector speed at the specified distance along the vector. The vector
distance is measured from the start of the move or from the last AV command.

#VECTOR Label

VMXY;VS 5000 Coordinated path

VP 10000,20000 Vector position

VP 20000, 30000 Vector position

VE End vector

BGS Begin sequence

AV 5000 After vector distance
VS 1000 Reduce speed

EN End

Event Trigger - Multiple Move with Wait

This example makes multiple relative distance moves by waiting for each to be complete before executing new

moves.
#MOVES Label
PR 12000 Distance
SP 20000 Speed
AC 100000 Acceleration
BGX Start Motion
AD 10000 Wait a distance of 10,000 counts
SP 5000 New Speed
AMX Wait until motion is completed
WT 200 Wait 200 ms
PR -10000 New Position
SP 30000 New Speed
AC 150000 New Acceleration

130 e Chapter 7 Application Programming DMC-40x0

BGX Start Motion
EN End

Define Output Waveform Using AT

The following program causes Output 1 to be high for 10 msec and low for 40 msec. The cycle repeats every 50

msec.
#OUTPUT Program label
ATO Initialize time reference
SB1 Set Output 1
#LOOP Loop
AT 10 After 10 msec from reference,
CB1 Clear Output 1
AT -40 Wait 40 msec from reference and reset reference
SB1 Set Output 1
JP #LOOP Loop
EN

Conditional Jumps

The DMC-40x0 provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions for branching
to a new program location based on a specified condition. The conditional jump determines if a condition is satisfied
and then branches to a new location or subroutine. Unlike event triggers, the conditional jump instruction does not
halt the program sequence. Conditional jumps are useful for testing events in real-time. They allow the controller to
make decisions without a host computer. For example, the DMC-40x0 can decide between two motion profiles

based on the state of an input line.

Command Format - JP and JS

FORMAT: DESCRIPTION

JS destination, logical condition | Jump to subroutine if logical condition is satisfied

JP destination, logical condition | Jump to location if logical condition is satisfied

The destination is a program line number or label where the program sequencer will jump if the specified condition
is satisfied. Note that the line number of the first line of program memory is 0. The comma designates “IF”. The

logical condition tests two operands with logical operators.

Logical operators:

OPERATOR DESCRIPTION

< less than

> greater than

= equal to

<= less than or equal to
>= greater than or equal to
<> not equal

Conditional Statements

The conditional statement is satisfied if it evaluates to any value other than zero. The conditional statement can be
any valid DMC-40x0 numeric operand, including variables, array elements, numeric values, functions, keywords,
and arithmetic expressions. If no conditional statement is given, the jump will always occur.

DMC-40x0

Chapter 7 Application Programming e 131

Examples:

Number V1=6
Numeric Expression V1=V7*6
@ABS[V1]>10
Array Element V1<Count[2]
Variable V1iV2
Internal Variable _TPX=0
_TVX>500
/O V1>@AN[2]
@IN[1]=0

Multiple Conditional Statements

The DMC-40x0 will accept multiple conditions in a single jump statement. The conditional statements are
combined in pairs using the operands “&” and “|”. The “&” operand between any two conditions, requires that both
statements must be true for the combined statement to be true. The “|”” operand between any two conditions,
requires that only one statement be true for the combined statement to be true.

Note: Each condition must be placed in parentheses for proper evaluation by the controller. In addition, the DMC-
40x0 executes operations from left to right. See Mathematical and Functional Expressions for more information.

For example, using variables named V1, V2, V3 and V4:
JP #TEST, (V1<V2) & (V3<V4)

In this example, this statement will cause the program to jump to the label #TEST if V1 is less than V2 and V3 is
less than V4. To illustrate this further, consider this same example with an additional condition:

JP #TEST, ((V1<V2) & (V3<V4)) | (V5<V6)

This statement will cause the program to jump to the label #TEST under two conditions; 1. If V1 is less than V2
and V3 is less than V4. OR 2. If V5 is less than V6.

Using the JP Command:

If the condition for the JP command is satisfied, the controller branches to the specified label or line number and
continues executing commands from this point. If the condition is not satisfied, the controller continues to execute
the next commands in sequence.

Conditional Meaning
JP #Loop,COUNT<10 Jump to #Loop if the variable, COUNT, is less than 10

JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high. After the
subroutine MOVE2 is executed, the program sequencer returns to the main
program location where the subroutine was called.

JP #BLUE,@ABS[V2]>2 Jump to #BLUE if the absolute value of variable, V2, is greater than 2

JP #C,V1*V7<=V8*V2 Jump to #C if the value of V1 times V7 is less than or equal to the
value of V8*Vv2

JP#A Jump to #A

Example Using JP command:

Move the X motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec between moves.

#BEGIN Begin Program

COUNT=10 Initialize loop counter
#LOOP Begin loop

PA 1000 Position absolute 1000
BGX Begin move

132 e Chapter 7 Application Programming DMC-40x0

AMX Wait for motion complete

WT 100 Wait 100 msec

PA O Position absolute 0O

BGX Begin move

AMX Wait for motion complete
WT 100 Wait 100 msec

COUNT=COUNT-1 Decrement loop counter

JP #LOOP,COUNT>0 Test for 10 times thru loop
EN End Program

Using If, Else, and Endif Commands

The DMC-40x0 provides a structured approach to conditional statements using IF, ELSE and ENDIF commands.

Using the IF and ENDIF Commands

An IF conditional statement is formed by the combination of an IF and ENDIF command. The IF command has as
it’s arguments one or more conditional statements. If the conditional statement(s) evaluates true, the command
interpreter will continue executing commands which follow the IF command. If the conditional statement evaluates
false, the controller will ignore commands until the associated ENDIF command is executed OR an ELSE command
occurs in the program (see discussion of ELSE command below).

Note: An ENDIF command must always be executed for every IF command that has been executed. It is
recommended that the user not include jump commands inside IF conditional statements since this causes re-
direction of command execution. In this case, the command interpreter may not execute an ENDIF command.

Using the ELSE Command

The ELSE command is an optional part of an IF conditional statement and allows for the execution of command
only when the argument of the IF command evaluates False. The ELSE command must occur after an IF command
and has no arguments. If the argument of the IF command evaluates false, the controller will skip commands until
the ELSE command. If the argument for the IF command evaluates true, the controller will execute the commands
between the IF and ELSE command.

Nesting IF Conditional Statements

The DMC-40x0 allows for IF conditional statements to be included within other IF conditional statements. This
technique is known as ‘nesting’ and the DMC-40x0 allows up to 255 IF conditional statements to be nested. This is
a very powerful technique allowing the user to specify a variety of different cases for branching.

Command Format - IF, ELSE and ENDIF

Format: Description

IF conditional statement(s) Execute commands proceeding IF command (up to ELSE command) if
conditional statement(s) is true, otherwise continue executing at ENDIF
command or optional ELSE command.

ELSE Optional command. Allows for commands to be executed when argument
of IF command evaluates not true. Can only be used with IF command.

ENDIF Command to end IF conditional statement. Program must have an ENDIF
command for every IF command.

Example using IF, ELSE and ENDIF:
#TEST Begin Main Program “TEST”
11,,3 Enable input interrupts on input 1 and input 2

DMC-40x0 Chapter 7 Application Programming e 133

MG “WAITING FOR
#LOOP

JP #LOOP

EN

#ININT

IF (@IN[1]=0)
IF (@IN[2]=0)
MG “INPUT 1 AND
ELSE

MG “ONLY
ENDIF
ELSE
MG"ONLY
ENDIF
HWALT
JPHWAIT, (@IN[1]=0) | (@IN[2]=0)
RIO

INPUT 1, INPUT 2"

INPUT 2 ARE ACTIVE”

INPUT 1 IS ACTIVE

INPUT 2 IS ACTIVE"

Subroutines

Output message

Label to be used for endless loop

Endless loop

End of main program

Input Interrupt Subroutine

IF conditional statement based on input 1

2" IF conditional statement executed if 1% IF conditional true
if 2™ IF conditional
conditional
if 2™ IF conditional
End of 2" conditional statement

ELSE command for 1°* IF conditional statement
Message to be executed if 1°° IF conditional statement is false

Message to be executed is true
ELSE command for 2" IF

Message to be executed

statement
is false

End of 1°* conditional statement

Label to be used for a loop

Loop until both input 1 and input 2 are not active

End Input Interrupt Routine without restoring trippoints

A subroutine is a group of instructions beginning with a label and ending with an end command (EN). Subroutines
are called from the main program with the jump subroutine instruction JS, followed by a label or line number, and
conditional statement. Up to 8 subroutines can be nested. After the subroutine is executed, the program sequencer
returns to the program location where the subroutine was called unless the subroutine stack is manipulated as

described in the following section.
Example:

An example of a subroutine to draw a square 500 counts per side is given below. The square is drawn at vector

position 1000,1000.

#M

CB1

VP 1000,1000;LE;BGS
AMS

SB1

JS #Square;CB1l
EN

#Square
V1=500;JS #L
V1=-V1;JS #L

EN

#L;PR V1,V1;BGX
AMX; BGY ; AMY

EN

Stack Manipulation

It is possible to manipulate the subroutine

Begin Main Program

Clear Output Bit 1 (pick up pen)
Define vector position; move pen
Wait for after motion trippoint

Set Output Bit 1 (put down pen)

Jump to square subroutine

End Main Program

Square subroutine

Define length of side

Switch direction

End subroutine

Define X,Y; Begin X

After motion on X, Begin Y

End subroutine

stack by using the ZS command. Every time a JS instruction, interrupt or

automatic routine (such as #POSERR or #LIMSWI) is executed, the subroutine stack is incremented by 1. Normally
the stack is restored with an EN instruction. Occasionally it is desirable not to return back to the program line where
the subroutine or interrupt was called. The ZS1 command clears 1 level of the stack. This allows the program

sequencer to continue to the next line. The ZS0 command resets the stack to its initial value. For example, if a limit

134 e Chapter 7 Application Programming

DMC-40x0

occurs and the #LIMSWI routine is executed, it is often desirable to restart the program sequence instead of
returning to the location where the limit occurred. To do this, give a ZS command at the end of the #LIMSWI
routine.

Auto-Start Routine

The DMC-40x0 has a special label for automatic program execution. A program which has been saved into the
controller’s non-volatile memory can be automatically executed upon power up or reset by beginning the program
with the label #AUTO. The program must be saved into non-volatile memory using the command, BP.

Automatic Subroutines for Monitoring Conditions

Often it is desirable to monitor certain conditions continuously without tying up the host or DMC-40x0 program
sequences. The controller can monitor several important conditions in the background. These conditions include
checking for the occurrence of a limit switch, a defined input, position error, or a command error. Automatic
monitoring is enabled by inserting a special, predefined label in the applications program. The pre-defined labels

are:
SUBROUTINE DESCRIPTION
#LIMSWI Limit switch on any axis goes low
#ININT Input specified by II goes low
#POSERR Position error exceeds limit specified by ER
#MCT IME Motion Complete timeout occurred. Timeout period set by TW command
#CMDERR Bad command given
#AUTO Automatically executes on power up
#AUTOERR Automatically executes when a checksum is encountered during #AUTO
start-up. Check error condition with _RS.
bit 0 for variable checksum error
bit 1 for parameter checksum error
bit 2 for program checksum error
bit 3 for master reset error (there should be no program)

For example, the #POSERR subroutine will automatically be executed when any axis exceeds its position error
limit. The commands in the #POSERR subroutine could decode which axis is in error and take the appropriate
action. In another example, the #ININT label could be used to designate an input interrupt subroutine. When the
specified input occurs, the program will be executed automatically.

NOTE: An application program must be running for #CMDERR to function.

Example - Limit Switch:

This program prints a message upon the occurrence of a limit switch. Note, for the #LIMSWI routine to function,
the DMC-40x0 must be executing an applications program from memory. This can be a very simple program that
does nothing but loop on a statement, such as #LOOP;JP #LOOP;EN. Motion commands, such as JG 5000 can still
be sent from the PC even while the “dummy” applications program is being executed.

tED Edit Mode

000 #LOOP Dummy Program

001 JP #LOOP;EN Jump to Loop

002 #LIMSWI Limit Switch Label

003 MG “LIMIT OCCURRED” Print Message

004 RE Return to main program
<control> Q Quit Edit Mode

DMC-40x0 Chapter 7 Application Programming e 135

:XQ #LOOP Execute Dummy Program
:JG 5000 Jog
:BGX Begin Motion

Now, when a forward limit switch occurs on the X axis, the #LIMSWI subroutine will be executed.

Notes regarding the #LIMSWI Routine:
1) The RE command is used to return from the #LIMSWI subroutine.
2) The #LIMSWI subroutine will be re-executed if the limit switch remains active.

The #LIMSWI routine is only executed when the motor is being commanded to move.

Example - Position Error

:ED Edit Mode

000 #LOOP Dummy Program

001 JP #LOOP;EN Loop

002 #POSERR Position Error Routine
003 V1=_TEX Read Position Error
004 MG “EXCESS POSITION ERROR” Print Message

005 MG “ERROR=",V1= Print Error

006 RE Return from Error
<control> Q Quit Edit Mode

:XQ #LOOP Execute Dummy Program
:JG 100000 Jog at High Speed
:BGX Begin Motion

Example - Input Interrupt

#A Label

11 Input Interrupt on 1

JG 30000, , ,60000 Jog

BGXW Begin Motion

#LOOP ; JP#LOOP; EN Loop

#ININT Input Interrupt

STXW; AM Stop Motion

#TEST;JP #TEST, @IN[1]=0 Test for Input 1 still low
JG 30000, ,,6000 Restore Velocities

BGXW Begin motion

RIO Return from interrupt routine to Main Program and do not re-

enable trippoints

Example - Motion Complete Timeout

#BEGIN Begin main program

TW 1000 Set the time out to 1000 ms
PA 10000 Position Absolute command
BGX Begin motion

MCX Motion Complete trip point
EN End main program

#MCTIME Motion Complete Subroutine
MG “X fell short” Send out a message

EN End subroutine

136 e Chapter 7 Application Programming DMC-40x0

This simple program will issue the message “X fell short” if the X axis does not reach the commanded position

within 1 second of the end of the profiled move.

The above program prompts the operator to enter a jog speed. If the operator enters a number out of range (greater

Example - Command Error

#BEGIN

IN “ENTER SPEED”, SPEED

JG SPEED;BGX;
JP #BEGIN

EN

#CMDERR
JP#DONE, _ED<>2
JP#DONE,_TC<>6
MG “SPEED TOO HIGH"
MG “TRY AGAIN”
ZS1

JP #BEGIN
#DONE

ZS0

EN

Begin main program
Prompt for speed

Begin motion

Repeat

End main program

Command error utility
Check if error on line 2
Check if out of range
Send message

Send message

Adjust stack

Return to main program
End program if other error
Zero stack

End program

than 8 million), the #CMDERR routine will be executed prompting the operator to enter a new number.

In multitasking applications, there is an alternate method for handling command errors from different threads.

Using the XQ command along with the special operands described below allows the controller to either skip or retry

invalid commands.

OPERAND FUNCTION

_ED1 Returns the number of the thread that generated an error

_ED2 Retry failed command (operand contains the location of the failed command)

_ED3 Skip failed command (operand contains the location of the command after the failed
command)

The operands are used with the XQ command in the following format:

XQ _ED2 (or _ED3), ED1,1

Where the “,1” at the end of the command line indicates a restart; therefore, the existing program stack will not be
removed when the above format executes.

The following example shows an error correction routine which uses the operands.

#A
JP#A
EN

#B
N=-1
KP N
TY
EN

#CMDERR

Example - Command Error w/Multitasking

Begin thread 0 (continuous loop)

End of thread O

Begin thread 1

Create new variable

Set KP to value of N, an invalid value
Issue invalid command

End of thread 1

Begin command error subroutine

DMC-40x0

Chapter 7 Application Programming e 137

IF _TC=6
N=1

XQ _ED2, ED1,1
ENDIF

IF _TC=1

XQ _ED3, ED1,1
ENDIF

EN

IT error is out of range (KP -1)
Set N to a valid number
Retry KP N command

IT error is invalid command (TY)
Skip invalid command

End of command error routine

Example - Communication Interrupt

A DMC-4010 is used to move the A axis back and forth from 0 to 10000. This motion can be paused, resumed and
stopped via input from an auxiliary port terminal.

Instruction
#BEGIN
CC 9600,0,1,0
Cl 2
MG {P2}"Type 0O to stop motion"
MG {P2}"Type 1 to pause motion"
MG {P2}"Type 2 to resume motion"
rate=2000
SPA=rate
#LOOP
PAA=10000
BGA
AMA
PAA=0
BGA
AMA
JP #LOOP
EN
#COMINT
JP #STOP,P2CH="0"
JP #PAUSE,P2CH=""1"
JP #RESUME,P2CH=""2"
EN1,1
#STOP
STA;ZS;EN
#PAUSE
rate=_SPA
SPA=0
EN1,1
#RESUME
SPA=rate
EN1,1

Interpretation

Label for beginning of program

Setup communication configuration for auxiliary serial port

Setup communication interrupt for auxiliary serial port

Message out of auxiliary port
Message out of auxiliary port
Message out of auxiliary port
Variable to remember speed
Set speed of A axis motion
Label for Loop
Move to absolute position 10000
Begin Motion on A axis
Wait for motion to be complete
Move to absolute position O
Begin Motion on A axis
Wait for motion to be complete
Continually loop to make back and forth motion
End main program

Interrupt Routine

Check for S (stop motion)

Check for P (pause motion)

Check for R (resume motion)

Do nothing

Routine for stopping motion

Stop motion on A axis; Zero program stack; End Program

Routine for pausing motion

Save current speed setting of A axis motion

Set speed of A axis to zero (allows for pause)
Re-enable trip-point and communication interrupt
Routine for resuming motion

Set speed on A axis to original speed

Re-enable trip-point and communication interrupt

For additional information, see section on Using Communication Interrupt.

138 e Chapter 7 Application Programming

DMC-40x0

Example — Ethernet Communication Error

This simple program executes in the DMC-40x0 and indicates (via the serial port) when a communication handle
fails. By monitoring the serial port, the user can re-establish communication if needed.

Instruction Interpretation

#LOOP Simple program loop

JP#LOOP

EN

#TCPERR Ethernet communication error auto routine

MG {P1} I1A4 Send message to serial port indicating
which handle did not receive proper
acknowledgment.

RE

Mathematical and Functional Expressions

Mathematical Ope

rators

For manipulation of data, the DMC-40x0 provides the use of the following mathematical operators:

Operator

Function

+

Addition

Subtraction

*

Multiplication

/

Division

%

Modulus

&

Logical And (Bit-wise)

Logical Or (On some computers, a solid vertical line appears as a broken line)

0

Parenthesis

The numeric range for addition,
for division is 1/65,000.

subtraction and multiplication operations is +/-2,147,483,647.9999. The precision

Mathematical operations are executed from left to right. Calculations within parentheses have precedence.

Examples:
SPEED = 7.5*V1/2

COUNT = COUNT+2
RESULT =_TPX-(@COS[45]*40)
TEMP = @IN[1]&@IN[2]

The variable, SPEED, is equal to 7.5 multiplied by V1 and divided by 2
The variable, COUNT, is equal to the current value plus 2.

Puts the position of X - 28.28 in RESULT. 40 * cosine of 45° is 28.28
TEMP is equal to 1 only if Input 1 and Input 2 are high

Bit-Wise Operators

The mathematical operators & and | are bit-wise operators. The operator, &, is a Logical And. The operator, |, is a
Logical Or. These operators allow for bit-wise operations on any valid DMC-40x0 numeric operand, including
variables, array elements, numeric values, functions, keywords, and arithmetic expressions. The bit-wise operators
may also be used with strings. This is useful for separating characters from an input string. When using the input
command for string input, the input variable will hold up to 6 characters. These characters are combined into a
single value which is represented as 32 bits of integer and 16 bits of fraction. Each ASCII character is represented
as one byte (8 bits), therefore the input variable can hold up to six characters. The first character of the string will be

DMC-40x0

Chapter 7 Application Programming e 139

placed in the top byte of the variable and the last character will be placed in the lowest significant byte of the
fraction. The characters can be individually separated by using bit-wise operations as illustrated in the following

example:
H#TEST

IN “ENTER”,LEN{S6}
FLEN=@FRAC[LEN]
FLEN=$10000*FLEN
LEN1=(FLEN&$SOOFF)

LEN2=(FLEN&$FF00)/$100

LEN3=LEN&$000000FF

LEN4=(LEN&$0000FF00)/$100
LEN5=(LEN&$O0FF0000)/$10000
LEN6=(LEN&$FF000000)/$1000000

MG LEN6 {S4}
MG LEN5 {S4}
MG LEN4 {S4}
MG LEN3 {S4}
MG LEN2 {S4}
MG LEN1 {S4}

EN

Begin main program

Input character string of up to 6 characters into variable ‘LEN’

Define variable ‘FLEN' as fractional part of variable ‘LEN’

Shift FLEN by 32 bits (IE - convert fraction, FLEN, to integer)

Mask top byte of FLEN and set this value to variable ‘LENY
Let variable, ‘LEN2' = top byte of FLEN

Let variable, ‘LEN3’ = bottom byte of LEN

Let variable, ‘LEN4’ = second byte of LEN

Let variable, ‘LEN5S = third byte of LEN

Let variable, ‘LEN6' = fourth byte of LEN
Display ‘LEN6' as string message of up to 4 chars
Display ‘LEN5’ as string message of up to 4 chars
Display ‘LEN4’as string message of up to 4 chars
Display ‘LEN3’ as string message of up to 4 chars
Display ‘LEN2' as string message of up to 4 chars

Display ‘LEN1' as string message of up to 4 chars

This program will accept a string input of up to 6 characters, parse each character, and then display each character.
Notice also that the values used for masking are represented in hexadecimal (as denoted by the preceding ‘$’). For
more information, see section Sending Messages.

To illustrate further, if the user types in the string “TESTME” at the input prompt, the controller will respond with

the following:

T Response from command MG LEN6 {S4}
E Response from command MG LEN5 {S4}
S Response from command MG LEN4 {S4}
T Response from command MG LEN3 {S4}
M Response from command MG LEN2 {S4}
E Response from command MG LEN1 {S4}
Functions
FUNCTION DESCRIPTION
@SIN[n] Sine of n (n in degrees, with range of -32768 to 32767 and 16-bit fractional resolution)
@COS|n] Cosine of n (n in degrees, with range of -32768 to 32767 and 16-bit fractional resolution)
@TAN(n] Tangent of n (n in degrees, with range of -32768 to 32767 and 16-bit fractional resolution)
@ASIN*[n] Arc Sine of n, between -90° and +90°. Angle resolution in 1/64000 degrees.
@ACOS* [n} Arc Cosine of n, between 0 and 180°. Angle resolution in 1/64000 degrees.
@ATAN* [n] Arc Tangent of n, between -90° and +90°. Angle resolution in 1/64000 degrees
@COM|n] 1’s Complement of n
@ABS[n] Absolute value of n
@FRAC]n] Fraction portion of n
@INT[n] Integer portion of n
@RND[n] Round of n (Rounds up if the fractional part of n is .5 or greater)

140 e Chapter 7 Application Programming

DMC-40x0

@SQR(n] Square root of n (Accuracy is +/-.004)

@IN[n] Return digital input at general input n (where n starts at 1)
@OUT][n] Return digital output at general output n (where n starts at 1)
@AN[n] Return analog input at general analog in n (where n starts at 1)

*Note that these functions are multi-valued. An application program may be used to find the correct band.

Functions may be combined with mathematical expressions. The order of execution of mathematical expressions is
from left to right and can be over-ridden by using parentheses.

Examples:
V1=@ABS[V7] The variable, V1, is equal to the absolute value of variable V7.
V2=5*@SIN[POS] The variable, V2, is equal to five times the sine of the variable, POS.
V3=@IN[1] The variable, V3, is equal to the digital value of input 1.
i

V4=2*(5+@AN[5]) The variable, V4,
multiplied by 2.

%]

equal to the value of analog input 5 plus 5, then

Variables

For applications that require a parameter that is variable, the DMC-40x0 provides 510 variables. These variables
can be numbers or strings. A program can be written in which certain parameters, such as position or speed, are
defined as variables. The variables can later be assigned by the operator or determined by program calculations.
For example, a cut-to-length application may require that a cut length be variable.

Example:
PR POSX Assigns variable POSX to PR command
JG RPMY*70 Assigns variable RPMY multiplied by 70 to JG command.

Programmable Variables

The DMC-40x0 allows the user to create up to 510 variables. Each variable is defined by a name which can be up to
eight characters. The name must start with an alphabetic character, however, numbers are permitted in the rest of
the name. Spaces are not permitted. Variable names should not be the same as DMC-40x0 instructions. For
example, PR is not a good choice for a variable name. USER LOWER CASE FOR VARIABLE NAMES.

Examples of valid and invalid variable names are:
Valid Variable Names
POSX

POS1
SPEEDZ

Invalid VVariable Names

REALLONGNAME ; ‘Cannot have more than 8 characters
123 ; ‘Cannot begin variable name with a number
SPEED Z ; ‘Cannot have spaces in the name

Assigning Values to Variables:

Assigned values can be numbers, internal variables and keywords, functions, controller parameters and strings. The
range for numeric variable values is 4 bytes of integer (231) followed by two bytes of fraction (+/-
2,147,483,647.9999).

Numeric values can be assigned to programmable variables using the equal sign.

DMC-40x0 Chapter 7 Application Programming e 141

Any valid DMC-40x0 function can be used to assign a value to a variable. For example, VI=@ABS[V2] or
V2=@IN[1]. Arithmetic operations are also permitted.

To assign a string value, the string must be in quotations. String variables can contain up to six characters which
must be in quotation.

Examples:
POSX=_TPX Assigns returned value from TPX command to variable POSX.
SPEED=5.75 Assigns value 5.75 to variable SPEED
INPUT=@IN[2] Assigns logical value of input 2 to variable INPUT
V2=V1+V3*V4 Assigns the value of V1 plus V3 times V4 to the variable V2.
VAR="CAT” Assign the string, CAT, to VAR

Assigning Variable Values to Controller Parameters

Variable values may be assigned to controller parameters such as GN or PR.
PR V1 Assign V1 to PR command
SP VS*2000 Assign VS*2000 to SP command
Displaying the value of variables at the terminal

Variables may be sent to the screen using the format, variable=. For example, V1= | returns the value of the
variable V1.

Example - Using Variables for Joystick

The example below reads the voltage of an X-Y joystick and assigns it to variables VX and VY to drive the motors
at proportional velocities, where:

10 Volts = 3000 rpm = 200000 c/sec
Speed/Analog input = 200000/10 = 20000

#JOYSTIK

JG 0,0

BGXY

#LOOP
VX=@AN[1]*20000
VY=@AN[2]*20000
JG VX, VY
JP#LOOP

EN

Label

Set in Jog mode
Begin Motion
Loop

Read joystick X
Read joystick Y

Jog at variable VX,VY

Repeat
End

Operands

Operands allow motion or status parameters of the DMC-40x0 to be incorporated into programmable variables and
expressions. Most DMC commands have an equivalent operand - which are designated by adding an underscore (_)
prior to the DMC-40x0 command. The command reference indicates which commands have an associated operand.

Status commands such as Tell Position return actual values, whereas action commands such as KP or SP return the
values in the DMC-40x0 registers. The axis designation is required following the command.

Examples of Internal Variables:
POSX=_TPX Assigns value from Tell Position X to the variable POSX.

GAIN=_GNZ*2
JP #LOOP,_TEX>5
JP #ERROR,_TC=1

Assigns value from GNZ multiplied by two to variable, GAIN.
Jump to #LOOP if the position error of X is greater than 5
Jump to #ERROR if the error code equals 1.

142 e Chapter 7 Application Programming DMC-40x0

Operands can be used in an expression and assigned to a programmable variable, but they cannot be assigned a
value. For example: GNX=2 is invalid.

Special Operands (Keywords)

The DMC-40x0 provides a few additional operands which give access to internal variables that are not accessible by
standard DMC-40x0 commands.

Keyword Function

_BGn *Returns a 1 if motion on axis ‘n’ is complete, otherwise returns 0.

_BN *Returns serial # of the board.

DA *Returns the number of arrays available

DL *Returns the number of available labels for programming

DM *Returns the available array memory

_HMn *Returns status of Home Switch (equals 0 or 1)

_LFn Returns status of Forward Limit switch input of axis ‘n’ (equals 0 or 1)

_LRX Returns status of Reverse Limit switch input of axis ‘n’ (equals 0 or 1)

UL *Returns the number of available variables

TIME Free-Running Real Time Clock (off by 2.4% - Resets with power-on).
Note: TIME does not use an underscore character (_) as other keywords.

* - These keywords have corresponding commands while the keywords LF, LR, and TIME do not have any
associated commands. All keywords are listed in the Command Reference.

Examples of Keywords:
V1=_LFX Assign V1 the logical state of the Forward Limit Switch on the X-axis
V3=TIME Assign V3 the current value of the time clock
V4=_HMW Assign V4 the logical state of the Home input on the W-axis

Arrays

For storing and collecting numerical data, the DMC-40x0 provides array space for 16000 elements. The arrays are
one dimensional and up to 30 different arrays may be defined. Each array element has a numeric range of 4 bytes of
integer (231)followed by two bytes of fraction (+/-2,147,483,647.9999).

Arrays can be used to capture real-time data, such as position, torque and analog input values. In the contouring
mode, arrays are convenient for holding the points of a position trajectory in a record and playback application.

Defining Arrays

An array is defined with the command DM. The user must specify a name and the number of entries to be held in
the array. An array name can contain up to eight characters, starting with an uppercase alphabetic character. The
number of entries in the defined array is enclosed in [.

Example:
DM POSX[7] Defines an array names POSX with seven entries
DM SPEED[100] Defines an array named speed with 100 entries
DM POSX[O0] Frees array space

DMC-40x0 Chapter 7 Application Programming e 143

Assignment of Array Entries

Like variables, each array element can be assigned a value. Assigned values can be numbers or returned values
from instructions, functions and keywords.

Array elements are addressed starting at count 0. For example the first element in the POSX array (defined with the
DM command, DM POSX][7]) would be specified as POSX][0].

Values are assigned to array entries using the equal sign. Assignments are made one element at a time by specifying
the element number with the associated array name.

NOTE: Arrays must be defined using the command, DM, before assigning entry values.

Examples:
DM SPEED[10]

SPEED[1]=7650.2
SPEED[1]=
POSX[10]=_TPX

CON[2]=@COS[POS]*2

TIMER[L]=TIME

Dimension Speed Array
Assigns the first element of the array, SPEED the value 7650.2
Returns array element value

Assigns the 10" element of the array POSX the returned value
from the tell position command.

Assigns the second element of the array CON the cosine of the
variable POS multiplied by 2.

Assigns the first element of the array timer the returned
value of the TIME keyword.

Using a Variable to Address Array Elements

An array element number can also be a variable. This allows array entries to be assigned sequentially using a

counter.
Example:

H#A
COUNT=0;DM POS[10]
#LOOP
WT 10
POS[COUNT]=_TPX
POS[COUNT]=
COUNT=COUNT+1
JP #LOOP,COUNT<10
EN

Begin Program

Initialize counter and define array
Begin loop

Wait 10 msec

Record position into array element
Report position

Increment counter

Loop until 10 elements have been stored
End Program

The above example records 10 position values at a rate of one value per 10 msec. The values are stored in an array
named POS. The variable, COUNT, is used to increment the array element counter. The above example can also be
executed with the automatic data capture feature described below.

Uploading and Downloading Arrays to On Board Memory

Arrays may be uploaded and downloaded using the QU and QD commands.

QU array[],start,end,delim
QD array[],start,end

where array is an array name such as A[].

start is the first element of array (default=0)

end is the last element of array (default=last element)

delim specifies whether the array data is separated by a comma (delim=1) or a carriage return

(delim=0).

The file is terminated using <control>Z, <control>Q, <control>D or \.

144 e Chapter 7 Application Programming

DMC-40x0

Automatic Data Capture into Arrays

The DMC-40x0 provides a special feature for automatic capture of data such as position, position error, inputs or
torque. This is useful for teaching motion trajectories or observing system performance. Up to eight types of data
can be captured and stored in eight arrays. The capture rate or time interval may be specified. Recording can done
as a one time event or as a circular continuous recording.

Command Summary - Automatic Data Capture

Command

Description

RA n[],m[]o[Lp[]

Selects up to eight arrays for data capture. The arrays must be defined with the
DM command.

RD typel,type2,type3,typed

Selects the type of data to be recorded, where typel, type2, type3, and type 4
represent the various types of data (see table below). The order of data type is
important and corresponds with the order of n,m,0,p arrays in the RA command.

RC nm

The RC command begins data collection. Sets data capture time interval where
n is an integer between 1 and 8 and designates 2" msec between data. m is
optional and specifies the number of elements to be captured. If m is not
defined, the number of elements defaults to the smallest array defined by DM.
When m is a negative number, the recording is done continuously in a circular
manner. _RD is the recording pointer and indicates the address of the next array
element. n=0 stops recording.

RC?

Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in progress

Data Types for Recording:

Data type Description
TIME Controller time as reported by the TIME command
_AFn Analog input (n=X,Y,Z,W.E,F,G,H, for AN inputs 1-8)
_DEX 2" encoder position (dual encoder)
_NOX Status bits
_Oop Output
_RLX Latched position
_RPX Commanded position
SCX Stop code
_TEX Position error
_TI Inputs
_TPX Encoder position
_TSX Switches (only bit 0-4 valid)
TTX Torque (reports digital value +/-32544)

Note: X may be replaced by Y,Z or W for capturing data on other axes.

Operand Summary - Automatic Data Capture

“RC

Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in progress

_RD

Returns address of next array element.

Example - Recording into

An Array

During a position move, store the X and Y positions and position error every 2 msec.

#RECORD

Begin program

DMC-40x0

Chapter 7 Application Programming e 145

DM XPOS[300],YPOS[300]
DM XERR[300],YERR[300]
RA XPOS[],XERR[],YPOS[].YERR[]
RD _TPX, TEX, TPY, TEY
PR 10000,20000

RC1

BG XY

#A;IP #A, RC=1

MG ““DONE”

EN

#PLAY

N=0

JP# DONE,N>300

N=

X POS[N]=

Y POS[N]=

XERR[N]=

YERR[N]=

N=N+1

#DONE

EN

De-allocating Array Space

Define X,Y position arrays
Define X,Y error arrays
Select arrays for capture
Select data types

Specify move distance
Start recording now, at rate of 2 msec
Begin motion

Loop until done

Print message

End program

Play back

Initial Counter

Exit if done

Print Counter

Print X position

Print Y position

Print X error

Print Y error

Increment Counter

Done

End Program

Array space may be de-allocated using the DA command followed by the array name. DA*[0] deallocates all the

arrays.

Input of Data (Numeric and String)

Input of Data

The command, IN, is used to prompt the user to input numeric or string data. Using the IN command, the user may
specify a message prompt by placing a message in quotations. When the controller executes an IN command, the
controller will wait for the input of data. The input data is assigned to the specified variable or array element.

An Example for Inputting Numeric Data
#A
IN “Enter Length”, LENX
EN

In this example, the message “Enter Length” is displayed on the computer screen. The controller waits for the
operator to enter a value. The operator enters the numeric value which is assigned to the variable, LENX.

Cut-to-Length Example

In this example, a length of material is to be advanced a specified distance. When the motion is complete, a cutting

head is activated to cut the material. The length is variable, and the operator is prompted to input it in inches. Motion
starts with a start button which is connected to input 1.

The load is coupled with a 2 pitch lead screw. A 2000 count/rev encoder is on the motor, resulting in a resolution of
4000 counts/inch. The program below uses the variable LEN, to length. The IN command is used to prompt the
operator to enter the length, and the entered value is assigned to the variable LEN.

146 e Chapter 7 Application Programming

DMC-40x0

#BEGIN

AC 800000
DC 800000
SP 5000
LEN=3.4
#CUT

All

IN “enter Length(IN)”, LE

PR LEN *4000
BGX

AMX

SB1
WT100;CB1

JP #CUT

EN

LABEL

Acceleration

Deceleration

Speed

Initial length in inches

Cut routine

Wait for start signal

Prompt operator for length in inches
Specify position in counts

Begin motion to move material

Wait for motion done

Set output to cut

Wait 100 msec, then turn off cutter

Repeat process
End program

Operator Data Entry Mode

The Operator Data Entry Mode provides for un-buffered data entry through the auxiliary RS-232 port. In this mode,
the DMC-40x0 provides a buffer for receiving characters. This mode may only be used when executing an
applications program.

The Operator Data Entry Mode may be specified for Port 2 only. This mode may be exited with the \ or <escape>

key.

NOTE: Operator Data Entry Mode cannot be used for high rate data transfer.

Set the third field of the CC command to one to set the Operator Data Entry Mode.

To capture and decode characters in the Operator Data Mode, the DMC-40x0 provides special the following

keywords:

Keyword Function

P2CH Contains the last character received
P2ST Contains the received string

P2NM Contains the received number
P2CD Contains the status code:

-1 mode disabled
0 nothing received

1 received character, but not <enter>
2 received string, not a number

3 received number

NOTE: The value of P2CD returns to zero after the corresponding string or number is read.

These keywords may be used in an applications program to decode data and they may also be used in conditional
statements with logical operators.

Example
Instruction Interpretation
JP #LOOP,P2CD< >3 Checks to see if status code is 3 (nhumber received)
JP #P,P1CH=""V" Checks if last character received was a V
PR P2NM Assigns received number to position
DMC-40x0 Chapter 7 Application Programming e 147

JS #XAXIS,P1ST="X" Checks to see if received string is X

Using Communication Interrupt

The DMC-40x0 provides a special interrupt for communication allowing the application program to be interrupted
by input from the user. The interrupt is enabled using the CI command. The syntax for the command is CI n:

n=0 Don't interrupt Port 2

n=1 Interrupt on <enter> Port 2
n=2 Interrupt on any character Port 2
n=-1 Clear any characters in buffer

The #COMINT label is used for the communication interrupt. For example, the DMC-40x0 can be configured to
interrupt on any character received on Port 2. The #COMINT subroutine is entered when a character is received and
the subroutine can decode the characters. At the end of the routine the EN command is used. EN,1 will re-enable
the interrupt and return to the line of the program where the interrupt was called, EN will just return to the line of
the program where it was called without re-enabling the interrupt. As with any automatic subroutine, a program
must be running in thread 0 at all times for it to be enabled.

Example
A DMC-40x0 is used to jog the A and B axis. This program automatically begins upon power-up and allows the

user to input values from the main serial port terminal. The speed of either axis may be changed during motion by
specifying the axis letter followed by the new speed value. An S stops motion on both axes.

Instruction Interpretation

#AUTO Label for Auto Execute
speedA=10000
speedB=10000 Initial B speed

Cl 2 Set Port 2 for Character Interrupt
Specify jog mode speed for A and B axis

Initial A speed

JG speedA, speedB
BGXY Begin motion

#PRINT Routine to print message to terminal
MG{P2}"'TO CHANGE SPEEDS"
MG{P2}"TYPE A OR B"
MG{P2}"TYPE S TO STOP"
#JOGLOOP Loop to change Jog speeds

Print message

JG speedA, speedB
JP #JOGLOOP
EN End of main program

Set new jog speed

#COMINT

JP #A,P2CH=""A"

JP #B,P2CH="B"

JP #C,P2CH="S"
ZS1;C12;JP#J0OGLOOP
#A; ISH#NUM
speedX=val
ZS1;CI12;IP#PRINT
#B; ISH#NUM
speedY=val
ZS1;CI12;IP#PRINT
#C;ST;AMX;CI-1
MG{~8}, "THE END"
ZS;EN,1

Interrupt routine
Check for A
Check for B
Check for S
Jump if not X,Y,S

New X speed
Jump to Print

New Y speed
Jump to Print

Stop motion on S

End-Re-enable interrupt

148 e Chapter 7 Application Programming

DMC-40x0

#NUM Routine for entering new jog speed

MG "ENTER",P2CH{S},"AXIS Prompt for value

SPEED" {N}

#NUMLOOP; CI-1 Check for enter

#NMLP Routine to check input from terminal
JP #NMLP,P2CD<2 Jump to error if string
JP #ERROR,P2CD=2 Read value

val=P2NM

EN End subroutine
#ERROR;CI-1 Error Routine

MG "INVALID-TRY AGAIN" Error message

JP #NMLP

EN End

Inputting String Variables

String variables with up to six characters may be input using the specifier, {Sn} where n represents the number of
string characters to be input. If n is not specified, six characters will be accepted. For example, IN "Enter A,B or
C", V{S} specifies a string variable to be input.

The DMC-40x0, stores all variables as 6 bytes of information. When a variable is specified as a number, the value
of the variable is represented as 4 bytes of integer and 2 bytes of fraction. When a variable is specified as a string,
the variable can hold up to 6 characters (each ASCII character is 1 byte). When using the IN command for string
input, the first input character will be placed in the top byte of the variable and the last character will be placed in
the lowest significant byte of the fraction. The characters can be individually separated by using bit-wise operations,
see section Bit-wise Operators.

Output of Data (Numeric and String)

Numerical and string data can be output from the controller using several methods. The message command, MG,
can output string and numerical data. Also, the controller can be commanded to return the values of variables and
arrays, as well as other information using the interrogation commands (the interrogation commands are described in
chapter 5).

Sending Messages

Messages may be sent to the bus using the message command, MG. This command sends specified text and
numerical or string data from variables or arrays to the screen.

Text strings are specified in quotes and variable or array data is designated by the name of the variable or array. For
example:
MG "The Final Value is", result

In addition to variables, functions and commands, responses can be used in the message command. For example:
MG "Analog input is', @AN[1]
MG ""The Position of A is™, TPA

Specifying the Port for Messages:

The port can be specified with the specifier, {P1} for the main serial port {P2} for auxiliary serial port, or {En} for
the Ethernet port.

MG {P2} "Hello World" Sends message to Auxiliary Port

DMC-40x0 Chapter 7 Application Programming e 149

Formatting Messages

String variables can be formatted using the specifier, {Sn} where n is the number of characters, 1 thru 6. For
example:

MG STR {S3}
This statement returns 3 characters of the string variable named STR.

Numeric data may be formatted using the {Fn.m} expression following the completed MG statement. {$n.m}
formats data in HEX instead of decimal. The actual numerical value will be formatted with n characters to the left of
the decimal and m characters to the right of the decimal. Leading zeros will be used to display specified format.

For example:
MG ""The Final Value is", result {F5.2}

If the value of the variable result is equal to 4.1, this statement returns the following:
The Final Value is 00004.10

If the value of the variable result is equal to 999999.999, the above message statement returns the following:
The Final Value is 99999.99

The message command normally sends a carriage return and line feed following the statement. The carriage return
and the line feed may be suppressed by sending {N} at the end of the statement. This is useful when a text string
needs to surround a numeric value.

Example:
#A
JG 50000;BGA;ASA
MG "The Speed is", _TVA {F5.1} {N}
MG *counts/sec"
EN

When #A is executed, the above example will appear on the screen as:

The speed is 50000 counts/sec

Using the MG Command to Configure Terminals

The MG command can be used to configure a terminal. Any ASCII character can be sent by using the format {"n}
where n is any integer between 1 and 255.

Example:
MG {~07} {~255}

sends the ASCII characters represented by 7 and 255 to the bus.

Summary of Message Functions

function description

" Surrounds text string

{Fn.m} Formats numeric values in decimal n digits to the left of the decimal point and
m digits to the right

{P1}, {P2} or {E} Send message to Main Serial Port, Auxiliary Serial Port or Ethernet Port

{$n.m} Formats numeric values in hexadecimal

{*n} Sends ASCII character specified by integer n

{N} Suppresses carriage return/line feed

{Sn} Sends the first n characters of a string variable, where n is 1 thru 6.

150 e Chapter 7 Application Programming DMC-40x0

Displaying Variables and Arrays

Variables and arrays may be sent to the screen using the format, variable= or array[x]=. For example, v1= returns
the value of v1.

Example - Printing a VVariable and an Array element

Instruction Interpretation

#DISPLAY Label

DM posA[7] Define Array POSA with 7 entries
PR 1000 Position Command

BGX Begin

AMX After Motion

vl=_TPA Assign Variable vi1

posA[1]=_TPA Assign the first entry

vl= Print vl

Interrogation Commands

The DMC-40x0 has a set of commands that directly interrogate the controller. When these command are entered,
the requested data is returned in decimal format on the next line followed by a carriage return and line feed. The
format of the returned data can be changed using the Position Format (PF), and Leading Zeros (LZ) command. For
a complete description of interrogation commands, see Chapter 5.

Using the PF Command to Format Response from Interrogation Commands

The command, PF, can change format of the values returned by theses interrogation commands:

BL? LE?
DE? PA?
DP ? PR ?
EM ? TN ?
FL? VE?
IP? TE
TP

The numeric values may be formatted in decimal or hexadecimal with a specified number of digits to the right and
left of the decimal point using the PF command.

Position Format is specified by:
PF mn

where m is the number of digits to the left of the decimal point (0 thru 10) and n is the number of digits to the right
of the decimal point (0 thru 4) A negative sign for m specifies hexadecimal format.

Hex values are returned preceded by a $ and in 2's complement. Hex values should be input as signed 2's
complement, where negative numbers have a negative sign. The default format is PF 10.0.

If the number of decimal places specified by PF is less than the actual value, a nine appears in all the decimal places.

Example
Instruction Interpretation
:DP21 Define position
:TPA Tell position
0000000021 Default format
:PF4 Change format to 4 places

DMC-40x0 Chapter 7 Application Programming e 151

:TPA Tell position

0021 New format

:PF-4 Change to hexadecimal format

:TPA Tell Position

$0015 Hexadecimal value

:PF2 Format 2 places

:TPA Tell Position

99 Returns 99 if position greater than 99

Removing Leading Zeros from Response to Interrogation Commands

The leading zeros on data returned as a response to interrogation commands can be removed by the use of the
command, LZ.

LZ0 Disables the LZ function

TP Tell Position Interrogation Command
-0000000009, 0000000005 Response (With Leading Zeros)

Lz1 Enables the LZ function

TP Tell Position Interrogation Command
-9, 5 Response (Without Leading Zeros)

Local Formatting of Response of Interrogation Commands

The response of interrogation commands may be formatted locally. To format locally, use the command, {Fn.m} or
{$n.m} on the same line as the interrogation command. The symbol F specifies that the response should be returned
in decimal format and $ specifies hexadecimal. n is the number of digits to the left of the decimal, and m is the
number of digits to the right of the decimal.

TP {F2.2} Tell Position in decimal format 2.2
-05.00, 05.00, 00.00, 07.00 Response from Interrogation Command
TP {$4.2} Tell Position in hexadecimal format 4.2
FFFB.00,$0005.00,$0000.00,$0007.00 Response from Interrogation Command

Formatting Variables and Array Elements

The Variable Format (VF) command is used to format variables and array elements. The VF command is specified
by:
VFE m.n

where m is the number of digits to the left of the decimal point (0 thru 10) and n is the number of digits to the right
of the decimal point (0 thru 4).

A negative sign for m specifies hexadecimal format. The default format for VF is VF 10.4

Hex values are returned preceded by a $ and in 2's complement.

Instruction Interpretation
v1=10 Assign vl
vl= Return vi
-0000000010.0000 Response - Default format
VF2.2 Change format
vl= Return v1
:10.00 Response - New format
VF-2.2 Specify hex format
vl= Return v1
$0A.00 Response - Hex value

152 e Chapter 7 Application Programming DMC-40x0

VF1 Change format
vl= Return vi
:9 Response - Overflow

Local Formatting of VVariables

PF and VF commands are global format commands that affect the format of all relevant returned values and
variables. Variables may also be formatted locally. To format locally, use the command, {Fn.m} or {$n.m}
following the variable name and the ‘=" symbol. F specifies decimal and $ specifies hexadecimal. n is the number
of digits to the left of the decimal, and m is the number of digits to the right of the decimal.

Instruction Interpretation

v1=10 Assign vl

vl= Return vl
-0000000010.0000 Default Format

v1i={F4.2} Specify local format
:0010.00 New format

vi={$4.2} Specify hex format
-$000A.00 Hex value

v1=""ALPHA" Assign string "ALPHA"™ to vl

v1={S4} Specify string format first 4 characters
-ALPH

The local format is also used with the MG command.

Converting to User Units

Variables and arithmetic operations make it easy to input data in desired user units such as inches or RPM.

The DMC-40x0 position parameters such as PR, PA and VP have units of quadrature counts. Speed parameters
such as SP, JG and VS have units of counts/sec. Acceleration parameters such as AC, DC, VA and VD have units
of counts/sec2. The controller interprets time in milliseconds.

All input parameters must be converted into these units. For example, an operator can be prompted to input a
number in revolutions. A program could be used such that the input number is converted into counts by multiplying
it by the number of counts/revolution.

Instruction Interpretation

#RUN Label

IN "ENTER # OF REVOLUTIONS"™,nl Prompt for revs

PR n1*2000 Convert to counts

IN "ENTER SPEED IN RPM",sl Prompt for RPMs

SP s1*2000/60 Convert to counts/sec
IN "ENTER ACCEL IN RAD/SEC2",al Prompt for ACCEL

AC al*2000/(2*3.14) Convert to counts/sec2
BG Begin motion

EN End program

DMC-40x0 Chapter 7 Application Programming e 153

Hardware 1/0O

Digital Outputs

The DMC-40x0 has an 8-bit uncommitted output port and an additional 32 I/O which may be configured as inputs or
outputs with the CO command for controlling external events. The DMC-4050 through DMC-4080 has an
additional 8 outputs. Each bit on the output port may be set and cleared with the software instructions SB (Set Bit)
and CB (Clear Bit), or OB (define output bit).

Example- Set Bit and Clear Bit

Instruction Interpretation
SB6 Sets bit 6 of output port
CB4 Clears bit 4 of output port

Example- Output Bit

The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value of a variable, array,
input or expression. Any non-zero value results in a set bit.

Interpretation

Set Output 1 if the variable POS is non-zero. Clear
Output 1 if POS equals O.

Set Output 2 if Input 1 is high. |If Input 1 is low,
clear Output 2.

Set Output 3 only if Input 1 and Input 2 are high.

Set Output 4 if element 1 in the array COUNT is non-
zero.

Instruction
OB1, POS

0B 2, @IN [1]

0B 3, @IN [1]&@IN [2]
OB 4, COUNT [1]

The output port can be set by specifying an 16-bit word using the instruction OP (Output Port). This instruction
allows a single command to define the state of the entire 16-bit output port, where bit 0 is output 1, bitl is output2
and so on. A 1 designates that the output is on.

Example- Output Port

Instruction Interpretation

OoP6 Sets outputs 2 and 3 of output port to high. All other
bits are O. (21 + 22 = 6)

OPO Clears all bits of output port to zero

OP 255 Sets all bits of output port to one.

(22+21+22+23+24+25+26+27)

The output port is useful for setting relays or controlling external switches and events during a motion sequence.

Example - Turn on output after move

Instruction Interpretation
#OUTPUT Label

PR 2000 Position Command
BG Begin

AM After move

SB1 Set Output 1

WT 1000 Wait 1000 msec
CB1 Clear Output 1
EN End

154 e Chapter 7 Application Programming

DMC-40x0

Digital Inputs

The general digital inputs for are accessed by using the @IN[n] function or the TI command. The @IN[n] function
returns the logic level of the specified input, n, where n is a number 1 through 48.

Example - Using Inputs to control program flow

Instruction Interpretation

JP #A,@IN[1]=0 Jump to A if input 1 is low
JP #B,@IN[2]=1 Jump to B if input 2 is high
Al 7 Wait until input 7 is high
Al -6 Wait until input 6 is low

Example - Start Motion on Switch

Motor A must turn at 4000 counts/sec when the user flips a panel switch to on. When panel switch is turned to off
position, motor A must stop turning.

Solution: Connect panel switch to input 1 of DMC-40x0. High on input 1 means switch is in on position.

Instruction Interpretation

#S;JG 4000 Set speed

Al 1;BGA Begin after input 1 goes high
Al -1;STA Stop after input 1 goes low
AMA;JP #S After motion, repeat

EN

The Auxiliary Encoder Inputs

The auxiliary encoder inputs can be used for general use. For each axis, the controller has one auxiliary encoder and
each auxiliary encoder consists of two inputs, channel A and channel B. The auxiliary encoder inputs are mapped to
the inputs 81-96.

Each input from the auxiliary encoder is a differential line receiver and can accept voltage levels between +/- 12
volts. The inputs have been configured to accept TTL level signals. To connect TTL signals, simply connect the
signal to the + input and leave the - input disconnected. For other signal levels, the - input should be connected to a
voltage that is % of the full voltage range (for example, connect the - input to 6 volts if the signal is a 0 - 12 volt
logic).

Example:

A DMC-4010 has one auxiliary encoder. This encoder has two inputs (channel A and channel B). Channel A input
is mapped to input 81 and Channel B input is mapped to input 82. To use this input for 2 TTL signals, the first

signal will be connected to AA+ and the second to AB+. AA- and AB- will be left unconnected. To access this
input, use the function @IN[81] and @IN[82].

NOTE: The auxiliary encoder inputs are not available for any axis that is configured for stepper motor.

Input Interrupt Function

The DMC-40x0 provides an input interrupt function which causes the program to automatically execute the
instructions following the #ININT label. This function is enabled using the Il m,n,0 command. The m specifies the
beginning input and n specifies the final input in the range. The parameter o is an interrupt mask. If m and n are
unused, o contains a number with the mask. For example, II,,5 enables inputs 1 and 3.

A low input on any of the specified inputs will cause automatic execution of the #ININT subroutine. The Return
from Interrupt (RI) command is used to return from this subroutine to the place in the program where the interrupt

DMC-40x0 Chapter 7 Application Programming e 155

had occurred. Ifit is desired to return to somewhere else in the program after the execution of the #ININT
subroutine, the Zero Stack (ZS) command is used followed by unconditional jump statements.

Important: Use the Rl command (not EN) to return from the #ININT subroutine.

Example - Input Interrupt
Instruction
#A
11
JG 30000,-20000
BG AB
#B
TP AB
WT 1000
JP #B
EN
#ININT

MG "Interrupt has occurred"

ST AB

#LOOP;JP #LOOP,@IN[1]=0

JG 15000,10000
WT 300

BG AB

R1

Analog Inputs

Interpretation
Label #A

Enable input 1 for interrupt function

Set speeds on A and B axes
Begin motion on A and B axes
Label #B

Report A and B axes positions
Wait 1000 milliseconds

Jump to #B

End of program

Interrupt subroutine

Displays the message

Stops motion on A and B axes
Loop until Interrupt cleared
Specify new speeds

Wait 300 milliseconds

Begin motion on A and B axes
Return from Interrupt subroutine

The DMC-40x0 provides eight analog inputs. The value of these inputs in volts may be read using the @AN[n]
function where n is the analog input 1 through 8. The resolution of the Analog-to-Digital conversion is 12 bits (16-
bit ADC is available as an option). Analog inputs are useful for reading special sensors such as temperature, tension

Oor pressure.

The following examples show programs which cause the motor to follow an analog signal. The first example is a
point-to-point move. The second example shows a continuous move.

Example - Position Follower (Point-to-Point)

Objective - The motor must follow an analog signal. When the analog signal varies by 10V, motor must move

10000 counts.

Method: Read the analog input and command A to move to that point.

Instruction
#POINTS

SP 7000

AC 80000;DC 80000
#LOOP
VP=@AN[1]*1000
PA VP

BGA

AMA

Interpretation
Label

Speed
Acceleration

Read and analog input, compute position
Command position

Start motion

After completion

156 e Chapter 7 Application Programming

DMC-40x0

JP #LOOP
EN

Repeat

End

Example - Position Follower (Continuous Move)

Method: Read the analog input, compute the commanded position and the position error. Command the motor to
run at a speed in proportions to the position error.

Instruction
#CONT

AC 80000;DC 80000

JG O
BGX
#LOOP

vp=@AN[1]*1000

ve=vp-_TPA
vel=ve*20
JG vel

JP #LOOP
EN

Interpretation

Label

Acceleration rate

Start job mode

Start motion

Compute desired position

Find position error

Compute velocity

Change velocity

Change velocity

End

Extended 1/O of the DMC-40x0 Controller

The DMC-40x0 controller offers 32 extended I/O points which can be configured as inputs or outputs in 8 bit
increments through software. The I/O points are accessed through 1 44 pin high density connector.

Configuring the 1/O of the DMC-40x0

The 32 extended 1/O points of the DMC-40x0 series controller can be configured in blocks of 8. The extended 1/0
is denoted as blocks 2-5 or bits 17-48.

The command, CO, is used to configure the extended I/O as inputs or outputs. The CO command has one field:

COn

where n is a decimal value which represents a binary number. Each bit of the binary number represents one block of
extended I/0. When set to 1, the corresponding block is configured as an output.

The least significant bit represents block 2 and the most significant bit represents block 5. The decimal value can be
calculated by the following formula. n=n2 +2*n3 + 4*n4 + 5*n5 where nx represents the block. If the nx value is
a one, then the block of 8 I/O points is to be configured as an output. If the nx value is a zero, then the block of 8
/0 points will be configured as an input. For example, if block 4 and 5 is to be configured as an output, CO 12 is

issued.
8-Bit I1/0 Block Block Binary Decimal Value for
Representation Block
17-24 2 2° 1
25-32 3 2! 2
33-40 4 22 4
41-48 5 23 8

The simplest method for determining n:

Step 1. Determine which 8-bit I/O blocks to be configured as outputs.

DMC-40x0

Chapter 7 Application Programming e 157

4080

Step 2. From the table, determine the decimal value for each I/0 block to be set as an output.
Step 3. Add up all of the values determined in step 2. This is the value to be used for n.
For example, if blocks 2 and 3 are to be outputs, then n is 3 and the command, CO3, should be issued.

NOTE: This calculation is identical to the formula: n =n2 + 2*n3 + 4*n4 + 5*n5 where nx represents the block.

Saving the State of the Outputs in Non-Volatile Memory

The configuration of the extended I/O and the state of the outputs can be stored in the non-volatile flash memory
with the BN command. If no value has been set, the default of CO 0 is used (all blocks are inputs).

Accessing Extended 1/0

When configured as an output, each I/O point may be defined with the SBn and CBn commands (where n=1 through
8 and 17 through 48). Outputs may also be defined with the conditional command, OBn (where n=1 through 8 and
17 through 48).

For 5-8 axis controllers, each I/O point may be defined with the SBn and CBn commands (where n=1
through 48).

The command, OP, may also be used to set output bits, specified as blocks of data. The OP command accepts 3
parameters. The first parameter sets the values of the main output port of the controller (Outputs 1-8, block 0). The
additional parameters set the value of the extended I/O as outlined:

OP m,a,b

where m is the decimal representation of the bits 1-8 (values from 0 to 255) and a,b,c,d represent the extended I/O in
consecutive groups of 16 bits (values from 0 to 65535). Arguments which are given for I/O points which are
configured as inputs will be ignored. The following table describes the arguments used to set the state of outputs.

Argument Blocks Bits Description
m 0 1-8 General Outputs
a 2,3 17-32 Extended 1/0

b 4,5 33-48 Extended 1/0

For example, if block 8 is configured as an output, the following command may be issued:
OP 7,7

This command will set bits 1,2,3 (block 0) and bits 33,34,35 (block 4) to 1. Bits 4 through 8 and bits 36 through 48
will be set to 0. All other bits are unaffected.

When accessing 1/O blocks configured as inputs, use the TIn command. The argument 'n’ refers to the block to be
read (n=0,2,3 or 4). The value returned will be a decimal representation of the corresponding bits.

Individual bits can be queried using the @IN[n] function (where n=1 through 8 or 17 through 48). If the following
command is issued;

Individual bits can be queried using the @IN[n] function (where n=1 through 48).

MG @IN[17]

the controller will return the state of the least significant bit of block 2 (assuming block 2 is configured as an input).

158 e Chapter 7 Application Programming DMC-40x0

Example Applications

Wire Cutter

An operator activates a start switch. This causes a motor to advance the wire a distance of 10”. When the motion
stops, the controller generates an output signal which activates the cutter. Allowing 100 ms for the cutting

completes the cycle.

Suppose that the motor drives the wire by a roller with a 2” diameter. Also assume that the encoder resolution is
1000 lines per revolution. Since the circumference of the roller equals 27 inches, and it corresponds to 4000

quadrature, one inch of travel equals:

4000/2w = 637 count/inch

This implies that a distance of 10 inches equals 6370 counts, and a slew speed of 5 inches per second, for example,

equals 3185 count/sec.

The input signal may be applied to I1, for example, and the output signal is chosen as output 1. The motor velocity
profile and the related input and output signals are shown in Fig. 7.1.

The program starts at a state that we define as #A. Here the controller waits for the input pulse on I1. As soon as
the pulse is given, the controller starts the forward motion.

Upon completion of the forward move, the controller outputs a pulse for 20 ms and then waits an additional 80 ms

before returning to #A for a new cycle.

INSTRUCTION

#A

All

PR 6370
SP 3185
BGX
AMX

SB1

WT 20
CB1

WT 80
JP #A

FUNCTION

Label

Wait for input 1
Distance

Speed

Start Motion

After motion is complete
Set output bit 1
Wait 20 ms

Clear output bit 1
Wait 80 ms

Repeat the process

DMC-40x0

Chapter 7 Application Programming e 159

START PULSE I1

MOTOR VELOCITY

OUTPUT PULSE

-

output

TIME INTERVALS
| move | | wait | ready move

Figure 7.1 - Motor Velocity and the Associated Input/Output signals

X-Y Table Controller

An X-Y-Z system must cut the pattern shown in Fig. 7.2. The X-Y table moves the plate while the Z-axis raises and
lowers the cutting tool.

The solid curves in Fig. 7.2 indicate sections where cutting takes place. Those must be performed at a feed rate of 1
inch per second. The dashed line corresponds to non-cutting moves and should be performed at 5 inch per second.
The acceleration rate is 0.1 g.

The motion starts at point A, with the Z-axis raised. An X-Y motion to point B is followed by lowering the Z-axis
and performing a cut along the circle. Once the circular motion is completed, the Z-axis is raised and the motion
continues to point C, etc.

Assume that all of the 3 axes are driven by lead screws with 10 turns-per-inch pitch. Also assume encoder
resolution of 1000 lines per revolution. This results in the relationship:

1 inch = 40,000 counts
and the speeds of

1 in/sec = 40,000 count/sec
5 in/sec = 200,000 count/sec

an acceleration rate of 0.1g equals
0.1g =38.6 in/s2 = 1,544,000 count/s2

Note that the circular path has a radius of 2”” or 80000 counts, and the motion starts at the angle of 270° and
traverses 360° in the CW (negative direction). Such a path is specified with the instruction

CR 80000,270,-360

160 e Chapter 7 Application Programming DMC-40x0

INSTRUCTION
#A

VM XY

VP 160000,160000
VE

VS 200000

VA 1544000

BGS

AMS

PR, ,-80000

SP, ,80000

BGZ

AMZ

CR 80000,270,-360
VE

VS 40000

BGS

AMS

PR, ,80000

BGZ

AMZ

PR -21600

SP 20000

BGX

AMX

PR, ,-80000

BGZ

AMZ

CR 80000,270,-360
VE

VS 40000

BGS

AMS

PR, ,80000

BGZ

AMZ

VP -37600,-16000
VE

VS 200000

BGS

AMS

EN

Further assume that the Z must move 2” at a linear speed of 2” per second. The required motion is performed by the
following instructions:

FUNCTION

Label

Circular interpolation for XY
Positions

End Vector Motion

Vector Speed

Vector Acceleration

Start Motion

When motion is complete

Move Z down

Z speed

Start Z motion

Wait for completion of Z motion
Circle

Feed rate

Start circular move
Wait for completion
Move Z up

Start Z move

Wait for Z completion
Move X

Speed X

Start X

Wait for X completion
Lower Z

Z second circle move

Return XY to start

Chapter 7 Application Programming e 161

0 4 9.3 X

Figure 7.2 - Motor Velocity and the Associated Input/Output signals

Speed Control by Joystick

The speed of a motor is controlled by a joystick. The joystick produces a signal in the range between -10V and
+10V. The objective is to drive the motor at a speed proportional to the input voltage.

Assume that a full voltage of 10 Volts must produce a motor speed of 3000 rpm with an encoder resolution of 1000
lines or 4000 count/rev. This speed equals:

3000 rpm = 50 rev/sec = 200000 count/sec

The program reads the input voltage periodically and assigns its value to the variable VIN. To get a speed of
200,000 ct/sec for 10 volts, we select the speed as:

Speed = 20000 x VIN

162 e Chapter 7 Application Programming DMC-40x0

The corresponding velocity for the motor is assigned to the VEL variable.

Instruction
#A

JGO

BGX

#B

VIN=@AN[1]
VEL=VIN*20000
JG VEL

JP #B

EN

Position Control by Joystick

This system requires the position of the motor to be proportional to the joystick angle. Furthermore, the ratio
between the two positions must be programmable. For example, if the control ratio is 5:1, it implies that when the
joystick voltage is 5 Volts, corresponding to 1028 counts, the required motor position must be 5120 counts. The
variable V3 changes the position ratio.

INSTRUCTION FUNCTION

#A Label

V3=5 Initial position ratio

DPO Define the starting position
JGO Set motor in jog mode as zero
BGX Start

#B

VIN=@AN[1] Read analog input

V2=V1*V3 Compute the desired position
V4=V2-_TPX-_TEX Find the following error
V5=V4*20 Compute a proportional speed
JG V5 Change the speed

JP #B Repeat the process

EN End

Backlash Compensation by Sampled Dual-Loop

The continuous dual loop, enabled by the DV 1 function is an effective way to compensate for backlash. In some
cases, however, when the backlash magnitude is large, it may be difficult to stabilize the system. In those cases, it
may be easier to use the sampled dual loop method described below.

This design example addresses the basic problems of backlash in motion control systems. The objective is to control
the position of a linear slide precisely. The slide is to be controlled by a rotary motor, which is coupled to the slide
by a lead screw. Such a lead screw has a backlash of 4 micron, and the required position accuracy is for 0.5 micron.

The basic dilemma is where to mount the sensor. If you use a rotary sensor, you get a 4 micron backlash error. On
the other hand, if you use a linear encoder, the backlash in the feedback loop will cause oscillations due to
instability.

An alternative approach is the dual-loop, where we use two sensors, rotary and linear. The rotary sensor assures
stability (because the position loop is closed before the backlash) whereas the linear sensor provides accurate load
position information. The operation principle is to drive the motor to a given rotary position near the final point.
Once there, the load position is read to find the position error and the controller commands the motor to move to a
new rotary position which eliminates the position error.

DMC-40x0 Chapter 7 Application Programming e 163

Since the required accuracy is 0.5 micron, the resolution of the linear sensor should preferably be twice finer. A
linear sensor with a resolution of 0.25 micron allows a position error of +/-2 counts.

The dual-loop approach requires the resolution of the rotary sensor to be equal or better than that of the linear
system. Assuming that the pitch of the lead screw is 2.5mm (approximately 10 turns per inch), a rotary encoder of
2500 lines per turn or 10,000 count per revolution results in a rotary resolution of 0.25 micron. This results in equal
resolution on both linear and rotary sensors.

To illustrate the control method, assume that the rotary encoder is used as a feedback for the X-axis, and that the
linear sensor is read and stored in the variable LINPOS. Further assume that at the start, both the position of X and
the value of LINPOS are equal to zero. Now assume that the objective is to move the linear load to the position of
1000.

The first step is to command the X motor to move to the rotary position of 1000. Once it arrives we check the
position of the load. If, for example, the load position is 980 counts, it implies that a correction of 20 counts must be
made. However, when the X-axis is commanded to be at the position of 1000, suppose that the actual position is
only 995, implying that X has a position error of 5 counts, which will be eliminated once the motor settles. This
implies that the correction needs to be only 15 counts, since 5 counts out of the 20 would be corrected by the X-axis.
Accordingly, the motion correction should be:

Correction = Load Position Error - Rotary Position Error

The correction can be performed a few times until the error drops below +/-2 counts. Often, this is performed in one
correction cycle.

Example:
INSTRUCTION FUNCTION
#A Label
DPO Define starting positions as zero
LINPOS=0
PR 1000 Required distance
BGX Start motion
#B
AMX Wait for completion
WT 50 Wait 50 msec
LINPOS = _DEX Read linear position
ERR=1000-LINPOS-_TEX Find the correction
JP #C,@ABS[ERR]<2 Exit if error is small
PR ERR Command correction
BGX
JP #B Repeat the process
#C
EN

164 e Chapter 7 Application Programming DMC-40x0

THIS PAGE LEFT BLANK INTENTIONALLY

DMC-40x0 Chapter 7 Application Programming e 165

Chapter 8 Hardware & Software
Protection

Introduction

The DMC-40x0 provides several hardware and software features to check for error conditions and to inhibit the
motor on error. These features help protect the various system components from damage.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the user to design effective error
handling and safety protection as part of the machine. Since the DMC-40x0 is an integral part of the machine, the
engineer should design his overall system with protection against a possible component failure on the DMC-40x0.
Galil shall not be liable or responsible for any incidental or consequential damages.

Hardware Protection

The DMC-40x0 includes hardware input and output protection lines for various error and mechanical limit
conditions. These include:

Output Protection Lines

Amp Enable

This signal goes low when the motor off command is given, when the position error exceeds the value specified by
the Error Limit (ER) command, or when off-on-error condition is enabled (OE1) and the abort command is given.
Each axis amplifier has separate amplifier enable lines. This signal also goes low when the watch-dog timer is
activated, or upon reset.

Note: The standard configuration of the AEN signal is TTL active low. Both the polarity and the amplitude can be
changed. To make these changes, see section entitled Amplifier Circuit in Chapter 3.

Error Output

The error output is a TTL signal which indicates an error condition in the controller. This signal is available on the
interconnect module as ERR. When the error signal is low, this indicates one of the following error conditions:

1. At least one axis has a position error greater than the error limit. The error limit is set by using the
command ER.

2. The reset line on the controller is held low or is being affected by noise.

3. There is a failure on the controller and the processor is resetting itself.

4. There is a failure with the output IC which drives the error signal.

166 e Chapter 8 Hardware & Software Protection DMC-40x0

Input Protection Lines

General Abort

A low input stops commanded motion instantly without a controlled deceleration. For any axis in which the Off-
On-Error function is enabled, the amplifiers will be disabled. This could cause the motor to ‘coast’ to a stop. If the
Off-On-Error function is not enabled, the motor will instantaneously stop and servo at the current position. The Off-
On-Error function is further discussed in this chapter.

The Abort input by default will also halt program execution; this can be changed by changing the 5™ field of the CN
command. See the CN command in the command reference for more information.

Selective Abort

The controller can be configured to provide an individual abort for each axis. Activation of the selective abort
signal will act the same as the Abort Input but only on the specific axis. To configure the controller for selective
abort, issue the command CN,,,1. This configures the inputs 5,6,7,8,13,14,15,16 to act as selective aborts for axes
A,B,C,D,E,F,G,H respectively.

ELO (Electronic Lock Out)

Used in conjunction with Galil amplifiers, this input allows the user the shutdown the amplifier at a hardware level.
For more detailed information on how specific Galil amplifiers behave when the ELO is triggered, see Integrated
Amplifiers and Drivers in the Appendices.

Forward Limit Switch
Low input inhibits motion in forward direction. If the motor is moving in the forward direction when the limit
switch is activated, the motion will decelerate and stop. In addition, if the motor is moving in the forward direction,
the controller will automatically jump to the limit switch subroutine, #LIMSWI (if such a routine has been written
by the user). The CN command can be used to change the polarity of the limit switches.

Reverse Limit Switch
Low input inhibits motion in reverse direction. If the motor is moving in the reverse direction when the limit switch
is activated, the motion will decelerate and stop. In addition, if the motor is moving in the reverse direction, the
controller will automatically jump to the limit switch subroutine, #LIMSWI (if such a routine has been written by
the user). The CN command can be used to change the polarity of the limit switches.

Software Protection

The DMC-40x0 provides a programmable error limit. The error limit can be set for any number between 0 and
2147483647 using the ER n command. The default value for ER is 16384.

Example:
ER 200,300,400,500 Set X-axis error limit for 200, Y-axis error limit to 300, Z-
axis error limit to 400 counts, W-axis error limit to 500
counts
ER,1,,10 Set Y-axis error limit to 1 count, set W-axis error limit to
10 counts.

The units of the error limit are quadrature counts. The error is the difference between the command position and
actual encoder position. If the absolute value of the error exceeds the value specified by ER, the controller will
generate several signals to warn the host system of the error condition. These signals include:

Signal or Function State if Error Occurs

POSERR Jumps to automatic excess position error subroutine
Error Light Turns on

OE Function Shuts motor off if OE1

AEN Output Line Goes low

DMC-40x0 Chapter 8 Hardware & Software Protection e 167

The Jump on Condition statement is useful for branching on a given error within a program. The position error of
X,Y,Z and W can be monitored during execution using the TE command.

Programmable Position Limits

The DMC-40x0 provides programmable forward and reverse position limits. These are set by the BL and FL
software commands. Once a position limit is specified, the DMC-40x0 will not accept position commands beyond
the limit. Motion beyond the limit is also prevented.

Example:
DPO0,0,0 Define Position
BL -2000,-4000,-8000 Set Reverse position limit
FL 2000,4000,8000 Set Forward position limit
JG 2000,2000,2000 Jog
BG XYZ Begin

(motion stops at forward limits)

Off-On-Error

The DMC-40x0 controller has a built in function which can turn off the motors under certain error conditions. This
function is known as ‘Off-On-Error”. To activate the OE function for each axis, specify 1 for X,Y,Z and W axis.
To disable this function, specify 0 for the axes. When this function is enabled, the specified motor will be disabled
under the following 3 conditions:

1. The position error for the specified axis exceeds the limit set with the command, ER
2. The abort command is given
3. The abort input is activated with a low signal.

Note: If the motors are disabled while they are moving, they may ‘coast’ to a stop because they are no longer under
servo control.

To re-enable the system, use the Reset (RS) or Servo Here (SH) command.

Examples:
OE 1,1,1,1 Enable off-on-error for X,Y,Z and W
OE 0,1,0,1 Enable off-on-error for Y and W axes and disable off-on-error for W and Z axes

Automatic Error Routine

The #POSERR label causes the statements following to be automatically executed if error on any axis exceeds the
error limit specified by ER. The error routine must be closed with the RE command. The RE command returns
from the error subroutine to the main program.

NOTE: The Error Subroutine will be entered again unless the error condition is gone.

Example:
#A;JP #AEN “Dummy” program
#POSERR Start error routine on error
MG “error” Send message
SB 1 Fire relay
STX Stop motor
AMX After motor stops
SHX Servo motor here to clear error
RE Return to main program

168 e Chapter 8 Hardware & Software Protection DMC-40x0

Limit Switch Routine

The DMC-40x0 provides forward and reverse limit switches which inhibit motion in the respective direction. There
is also a special label for automatic execution of a limit switch subroutine. The #LIMSWTI label specifies the start of
the limit switch subroutine. This label causes the statements following to be automatically executed if any limit
switch is activated and that axis motor is moving in that direction. The RE command ends the subroutine.

The state of the forward and reverse limit switches may also be tested during the jump-on-condition statement. The
_LR condition specifies the reverse limit and LF specifies the forward limit. X,Y,Z, or W following LR or LF
specifies the axis. The CN command can be used to configure the polarity of the limit switches.

Limit Switch Example:

#A;JIP #AEN Dummy Program

#LIMSWI Limit Switch Utility
V1i=_LFX Check if forward limit
V2=_LRX Check if reverse limit
JP#LF,V1=0 Jump to #LF if forward
JP#LR,V2=0 Jump to #LR if reverse
JP#END Jump to end

#LF #LF

MG “FORWARD LIMIT” Send message

STX; AMX Stop motion
PR-1000;BGX; AMX Move in reverse

JP#END End

#LR #LR

MG “REVERSE LIMIT" Send message

STX; AMX Stop motion
PR1000;BGX; AMX Move forward

#END End

RE Return to main program

DMC-40x0 Chapter 8 Hardware & Software Protection e 169

Chapter 9 Troubleshooting

Overview

The following discussion may help you get your system to work.

Potential problems have been divided into groups as follows:

1. Installatio

n

2. Stability and Compensation

3. Operation

The various symptoms along with the cause and the remedy are described in the following tables.

Installation

SYMPTOM

DIAGNOSIS

CAUSE

REMEDY

Motor runs away with no
connections from
controller to amplifier
input.

Adjusting offset causes the
motor to change speed.

1. Amplifier has an
internal offset.

2. Damaged amplifier.

Adjust amplifier offset. Amplifier
offset may also be compensated by
use of the offset configuration on
the controller (see the OF
command).

Replace amplifier.

Motor is enabled even
when MO command is
given

The SH command disables
the motor

1. The amplifier
requires the a different
Amplifier Enable setting
on the Interconnect
Module

Refer to Chapter 3 or contact Galil.

Unable to read main or
auxiliary encoder input.

The encoder does not work
when swapped with
another encoder input.

1. Wrong encoder
connections.
2. Encoder is damaged

3. Encoder
configuration incorrect.

Check encoder wiring. For single
ended encoders (CHA and CHB
only) do not make any connections
to the CHA- and CHB- inputs.

Replace encoder

Check CE command

170 e Chapter 9 Troubleshooting

DMC-40x0

Unable to read main or
auxiliary encoder input.

The encoder works
correctly when swapped

with another encoder input.

1. Wrong encoder
connections.

2. Encoder

configuration incorrect.

3. Encoder input or
controller is damaged

Check encoder wiring. For single
ended encoders (MA+ and MB+
only) do not make any connections
to the MA- and MB- inputs.

Check CE command

Contact Galil

Encoder Position Drifts

Swapping cables fixes the
problem

1. Poor Connections /
intermittent cable

Review all connections and
connector contacts.

Encoder Position Drifts

Significant noise can be
seen on MA+ and / or
MB+ encoder signals

1. Noise

Shield encoder cables

Avoid placing power cables near
encoder cables

Avoid Ground Loops
Use differential encoders
Use +/-12V encoders

Stability

SYMPTOM DIAGNOSIS CAUSE REMEDY
Servo motor runs away Reversed Motor Type 1. Wrong feedback Reverse Motor or Encoder Wiring
when the loop is closed. corrects situation (MT -1) polarity. (remember to set Motor Type back

to default value: MT 1)

Motor oscillates.

2. Too high gain or

too little damping.

Decrease KI and KP. Increase KD.

Operation

from TC1 diagnoses error.

SYMPTOM DIAGNOSIS CAUSE REMEDY
Controller rejects Response of controller 1. Anything Correct problem reported by TC1
commands. from TC1 diagnoses error.

Motor Doesn’t Move Response of controller 2. Anything Correct problem reported by SC

DMC-40x0

Chapter 9 Troubleshooting e 171

Chapter 10 Theory of Operation

Overview

The following discussion covers the operation of motion control systems. A typical motion control system consists
of the elements shown in Fig 10.1.

COMPUTER CONTROLLER DRIVER

ENCODER ﬁTOR

Figure 10.1 - Elements of Servo Systems

The operation of such a system can be divided into three levels, as illustrated in Fig. 10.2. The levels are:
1. Closing the Loop
2. Motion Profiling
3. Motion Programming

The first level, the closing of the loop, assures that the motor follows the commanded position. This is done by
closing the position loop using a sensor. The operation at the basic level of closing the loop involves the subjects of
modeling, analysis, and design. These subjects will be covered in the following discussions.

The motion profiling is the generation of the desired position function. This function, R(t), describes where the
motor should be at every sampling period. Note that the profiling and the closing of the loop are independent
functions. The profiling function determines where the motor should be and the closing of the loop forces the motor
to follow the commanded position

The highest level of control is the motion program. This can be stored in the host computer or in the controller.
This program describes the tasks in terms of the motors that need to be controlled, the distances and the speed.

172 e Chapter 10 Theory of Operation DMC-40x0

LEVEL

MOTION

3 PROGRAMMING
MOTION

2 PROFILING

CLOSED-LOOP
1 CONTROL

Figure 10.2 - Levels of Control Functions

The three levels of control may be viewed as different levels of management. The top manager, the motion program,
may specify the following instruction, for example.

PR 6000,4000

SP 20000,20000

AC 200000,00000

BG X

AD 2000

BG Y

EN

This program corresponds to the velocity profiles shown in Fig. 10.3. Note that the profiled positions show where
the motors must be at any instant of time.

Finally, it remains up to the servo system to verify that the motor follows the profiled position by closing the servo
loop.

The following section explains the operation of the servo system. First, it is explained qualitatively, and then the
explanation is repeated using analytical tools for those who are more theoretically inclined.

DMC-40x0 Chapter 10 Theory of Operation e 173

X VELOCITY

Y VELOCITY

X POSITION

Y POSITION

TIME

Figure 10.3 - Velocity and Position Profiles

Operation of Closed-Loop Systems

To understand the operation of a servo system, we may compare it to a familiar closed-loop operation, adjusting the
water temperature in the shower. One control objective is to keep the temperature at a comfortable level, say 90
degrees F. To achieve that, our skin serves as a temperature sensor and reports to the brain (controller). The brain
compares the actual temperature, which is called the feedback signal, with the desired level of 90 degrees F. The
difference between the two levels is called the error signal. If the feedback temperature is too low, the error is
positive, and it triggers an action which raises the water temperature until the temperature error is reduced
sufficiently.

The closing of the servo loop is very similar. Suppose that we want the motor position to be at 90 degrees. The
motor position is measured by a position sensor, often an encoder, and the position feedback is sent to the controller.
Like the brain, the controller determines the position error, which is the difference between the commanded position
of 90 degrees and the position feedback. The controller then outputs a signal that is proportional to the position
error. This signal produces a proportional current in the motor, which causes a motion until the error is reduced.
Once the error becomes small, the resulting current will be too small to overcome the friction, causing the motor to
stop.

The analogy between adjusting the water temperature and closing the position loop carries further. We have all
learned the hard way, that the hot water faucet should be turned at the “right” rate. If you turn it too slowly, the
temperature response will be slow, causing discomfort. Such a slow reaction is called over-damped response.

174 e Chapter 10 Theory of Operation DMC-40x0

The results may be worse if we turn the faucet too fast. The overreaction results in temperature oscillations. When
the response of the system oscillates, we say that the system is unstable. Clearly, unstable responses are bad when
we want a constant level.

What causes the oscillations? The basic cause for the instability is a combination of delayed reaction and high gain.
In the case of the temperature control, the delay is due to the water flowing in the pipes. When the human reaction
is too strong, the response becomes unstable.

Servo systems also become unstable if their gain is too high. The delay in servo systems is between the application
of the current and its effect on the position. Note that the current must be applied long enough to cause a significant
effect on the velocity, and the velocity change must last long enough to cause a position change. This delay, when
coupled with high gain, causes instability.

This motion controller includes a special filter which is designed to help the stability and accuracy. Typically, such
a filter produces, in addition to the proportional gain, damping and integrator. The combination of the three
functions is referred to as a PID filter.

The filter parameters are represented by the three constants KP, KI and KD, which correspond to the proportional,
integral and derivative term respectively.

The damping element of the filter acts as a predictor, thereby reducing the delay associated with the motor response.

The integrator function, represented by the parameter KI, improves the system accuracy. With the KI parameter, the
motor does not stop until it reaches the desired position exactly, regardless of the level of friction or opposing
torque.

The integrator also reduces the system stability. Therefore, it can be used only when the loop is stable and has a
high gain.

The output of the filter is applied to a digital-to-analog converter (DAC). The resulting output signal in the range
between +10 and -10 Volts is then applied to the amplifier and the motor.

The motor position, whether rotary or linear is measured by a sensor. The resulting signal, called position feedback,
is returned to the controller for closing the loop.

The following section describes the operation in a detailed mathematical form, including modeling, analysis and
design.

System Modeling

The elements of a servo system include the motor, driver, encoder and the controller. These elements are shown in
Fig. 10.4. The mathematical model of the various components is given below.

CONTROLLER
R X DIGITAL | Y \ E
S | EILTER ZOH DAC AMP MOTOR
C
P
ENCODER

Figure 10.4 - Functional Elements of a Motion Control System

DMC-40x0 Chapter 10 Theory of Operation e 175

Motor-Amplifier
The motor amplifier may be configured in three modes:
1. Voltage Drive
2. Current Drive
3. Velocity Loop

The operation and modeling in the three modes is as follows:

Voltage Drive

The amplifier is a voltage source with a gain of Kv [V/V]. The transfer function relating the input voltage, V, to the
motor position, P, is

P/V =K, /[KS(ST, +1)(ST, +1)]

where
2
T,=RI/K? [s]
and
T,=L/R [s]
and the motor parameters and units are
Kt Torque constant [Nm/A]
R Armature Resistance [
J Combined inertia of motor and load [kg.m2]
L Armature Inductance [H]

When the motor parameters are given in English units, it is necessary to convert the quantities to MKS units. For
example, consider a motor with the parameters:

Kt=14.16 oz - in/A = 0.1 Nm/A
R=2Q
J=0.0283 0z-in-s2 = 2.10-4 kg . m2
L =0.004H
Then the corresponding time constants are
Tm = 0.04 sec
and
Te =0.002 sec
Assuming that the amplifier gain is Kv = 4, the resulting transfer function is

P/V = 40/[s(0.04s+1)(0.002s+1)]

Current Drive

The current drive generates a current I, which is proportional to the input voltage, V, with a gain of Ka. The
resulting transfer function in this case is

P/V=KaKt/Js

where Kt and J are as defined previously. For example, a current amplifier with Ka =2 A/V with the motor
described by the previous example will have the transfer function:

176 e Chapter 10 Theory of Operation DMC-40x0

P/V = 1000/s2 [rad/V]

If the motor is a DC brushless motor, it is driven by an amplifier that performs the commutation. The combined
transfer function of motor amplifier combination is the same as that of a similar brush motor, as described by the
previous equations.

Velocity Loop

The motor driver system may include a velocity loop where the motor velocity is sensed by a tachometer and is fed
back to the amplifier. Such a system is illustrated in Fig. 10.5. Note that the transfer function between the input

voltage V and the velocity o is:

o /V = [K, Kls)/[1+K, K¢ Kg/Js] = 1/[Kg(sT1+1)]
where the velocity time constant, T1, equals

T1=J/K, KK,

This leads to the transfer function
P/V = 1/[Kg s(sT1+1)]

z K Kt/Js

Figure 10.5 - Elements of velocity loops

The resulting functions derived above are illustrated by the block diagram of Fig. 10.6.

DMC-40x0 Chapter 10 Theory of Operation e 177

VOLTAGE SOURCE

v E 1K W 1 P

K (STm+1)(eSTe+l) s

CURRENT SOURCE

vV I W P
‘ K £
a JS S

VELOCITY LOOP

v 1 w 1 P

K,(ST,+1) s

Figure 10.6 - Mathematical model of the motor and amplifier in three operational modes

Encoder

The encoder generates N pulses per revolution. It outputs two signals, Channel A and B, which are in quadrature.
Due to the quadrature relationship between the encoder channels, the position resolution is increased to 4N
quadrature counts/rev.

The model of the encoder can be represented by a gain of

K¢=4N/2n [count/rad]

For example, a 1000 lines/rev encoder is modeled as
Kf=638

DAC

The DAC or D-to-A converter converts a 16-bit number to an analog voltage. The input range of the numbers is
65536 and the output voltage range is +/-10V or 20V. Therefore, the effective gain of the DAC is

K= 20/65536 = 0.0003 [V/count]

178 e Chapter 10 Theory of Operation DMC-40x0

Digital Filter

The digital filter has three element in series: PID, low-pass and a notch filter. The transfer function of the filter.
The transfer function of the filter elements are:

PID D(z) = K(Z=A) + €z
YA Z-1
1-B
Low-pass L(z)= ﬁ
Notch N(z) = (Z-2)(Z _E)
(Z-p)Z-p)

The filter parameters, K, A, C and B are selected by the instructions KP, KD, KI and PL, respectively. The
relationship between the filter coefficients and the instructions are:

K = (KP + KD)
A =KD/(KP + KD)
C=KI2
B=PL

The PID and low-pass elements are equivalent to the continuous transfer function G(s).
G()=([P+sD+1/s)*a/(s+a)

where,
P=KP
D=T-*KD
1= KI2T

a= lll’l(l)
T B

where T is the sampling period, and B is the pole setting
For example, if the filter parameters of the DMC-40x0 are

KP=16
KD =144
KI=2
PL=0.75
T=0.001s

the digital filter coefficients are
K=160
A=09
Cc=1
a=250rad/s

and the equivalent continuous filter, G(s), is
G(s) =[16 + 0.144s + 1000/s} * 250/ (s+250)
The notch filter has two complex zeros, Z and z, and two complex poles, P and p.

The effect of the notch filter is to cancel the resonance affect by placing the complex zeros on top of the resonance
poles. The notch poles, P and p, are programmable and are selected to have sufficient damping. It is best to select

DMC-40x0 Chapter 10 Theory of Operation e 179

the notch parameters by the frequency terms. The poles and zeros have a frequency in Hz, selected by the command
NF. The real part of the poles is set by NB and the real part of the zeros is set by NZ.

The most simple procedure for setting the notch filter, identify the resonance frequency and set NF to the same
value. Set NB to about one half of NF and set NZ to a low value between zero and 5.

ZOH

The ZOH, or zero-order-hold, represents the effect of the sampling process, where the motor command is updated
once per sampling period. The effect of the ZOH can be modeled by the transfer function

H(s) = 1/(1+sT/2)

If the sampling period is T = 0.001, for example, H(s) becomes:
H(s) = 2000/(s+2000)

However, in most applications, H(s) may be approximated as one.

This completes the modeling of the system elements. Next, we discuss the system analysis.

System Analysis

To analyze the system, we start with a block diagram model of the system elements. The analysis procedure is
illustrated in terms of the following example.

Consider a position control system with the DMC-40x0 controller and the following parameters:

Kt=0.1 Nm/A Torque constant
J=2.10-4 kg.m2 System moment of inertia
R=2 Q Motor resistance

Ka=4 Amp/Volt Current amplifier gain
KP=12.5 Digital filter gain

KD =245 Digital filter zero

KI=0 No integrator

N =500 Counts/rev Encoder line density
T=1 ms Sample period

The transfer function of the system elements are:
Motor
M(s) = P/ = K/Js2 = 500/s2 [rad/A]

Amp
K, =4 [Amp/V]

DAC
K4=10.0003 [V/count]

Encoder
K¢=4N/2n =318 [count/rad]

ZOH
2000/(s+2000)

Digital Filter
KP=12.5, KD =245, T=0.001
Therefore,

D(z) = 1030 (z-0.95)/Z

180 e Chapter 10 Theory of Operation DMC-40x0

Accordingly, the coefficients of the continuous filter are:
P =50
D =0.98

The filter equation may be written in the continuous equivalent form:
G(s) =50+ 0.98s =.098 (s+51)

The system elements are shown in Fig. 10.7.

FILTER ZOH DAC AMP MOTOR
\%
! 50+0.980s 2000 0.0003 4 500
S+2000 S?
ENCODER
318

Figure 10.7 - Mathematical model of the control system
The open loop transfer function, A(s), is the product of all the elements in the loop.
A =390,000 (s+5 1)/[sz(s+2000)]

To analyze the system stability, determine the crossover frequency, oc at which A(j wc) equals one. This can be
done by the Bode plot of A(j oc), as shown in Fig. 10.8.

Magnitude
4
1
50 200 2000 W (rad/s)
0.1

Figure 10.8 - Bode plot of the open loop transfer function

For the given example, the crossover frequency was computed numerically resulting in 200 rad/s.

DMC-40x0 Chapter 10 Theory of Operation e 181

Next, we determine the phase of A(s) at the crossover frequency.
A(j200) = 390,000 (j200+51)/[(j200)2 . (j200 + 2000)]
o = Arg[A(j200)] = tan"1(200/51)-180° -tan~1(200/2000)
o =76°-180°-6°= -110°

Finally, the phase margin, PM, equals
PM =180°+ a.=70°

As long as PM is positive, the system is stable. However, for a well damped system, PM should be between 30
degrees and 45 degrees. The phase margin of 70 degrees given above indicated overdamped response.

Next, we discuss the design of control systems.

System Design and Compensation

The closed-loop control system can be stabilized by a digital filter, which is preprogrammed in the DMC-40x0
controller. The filter parameters can be selected by the user for the best compensation. The following discussion
presents an analytical design method.

The Analytical Method

The analytical design method is aimed at closing the loop at a crossover frequency, [Ic, with a phase margin PM.
The system parameters are assumed known. The design procedure is best illustrated by a design example.

Consider a system with the following parameters:

Kt Nm/A Torque constant
J=2.10-4 kg.m2 System moment of inertia
R=2 Q Motor resistance

Ka=2 Amp/Volt Current amplifier gain
N=1000 Counts/rev Encoder line density

The DAC of theDMC-40x0 outputs +/-10V for a 16-bit command of +/-32768 counts.

The design objective is to select the filter parameters in order to close a position loop with a crossover frequency of
0 = 500 rad/s and a phase margin of 45 degrees.

The first step is to develop a mathematical model of the system, as discussed in the previous system.

Motor
M(s) = P/I = Kt/Js2 = 1000/s2

Amp

Ka=2 [Amp/V]
DAC

Kd =10/32768 = .0003

Encoder
Kf=4N/2[0 =636

ZOH
H(s) = 2000/(s+2000)

182 e Chapter 10 Theory of Operation DMC-40x0

Compensation Filter
G(s)=P +sD

The next step is to combine all the system elements, with the exception of G(s), into one function, L(s).
L(s) = M(s) Ky Kq K¢ H(s) =3.17%109/[s2(s+2000)]

Then the open loop transfer function, A(s), is
A(s) = L(s) G(s)

Now, determine the magnitude and phase of L(s) at the frequency o = 500.

L(j500) = 3.17%106/[(j500)2 (j500+2000)]

This function has a magnitude of
IL(j500)| = 0.00625
and a phase
Arg[L(j500)] = -180L] - tan-1(500/2000) = -194[]

G(s) is selected so that A(s) has a crossover frequency of 500 rad/s and a phase margin of 45 degrees. This requires
that

IA(500)| = 1
Arg [A(j500)] = -135°

However, since
A(s) =L(s) G(s)
then it follows that G(s) must have magnitude of
|G(j500)| = |A(G500)/L(j500)| = 160
and a phase
arg [G(j500)] = arg [A(j500)] - arg [L(j500)] = -135° + 194° = 59°
In other words, we need to select a filter function G(s) of the form
G(s)=P+sD
so that at the frequency o, =500, the function would have a magnitude of 160 and a phase lead of 59 degrees.
These requirements may be expressed as:
|G(j500)| = |P + (jS00D)| = 160
and
arg [G(j500)] = tan"1[500D/P] = 59°
The solution of these equations leads to:

P =160cos 59°=82.4
500D = 160sin 59° = 137

Therefore,
D=0.274

and
G=82.4+0.2744s

The function G is equivalent to a digital filter of the form:
D(z) =KP + KD(1-z'1)

where

DMC-40x0 Chapter 10 Theory of Operation e 183

P =KP

D=KD=*T
and
KD =D/T
Assuming a sampling period of T=1ms, the parameters of the digital filter are:
KP=282.4
KD =247.4

The DMC-40x0 can be programmed with the instruction:

KP 82.4
KD 68.6

In a similar manner, other filters can be programmed. The procedure is simplified by the following table, which
summarizes the relationship between the various filters.

Equivalent Filter Form - DMC-40x0
Digital D(z) =[K(z-A/z) + Cz/(z-1)]* (1-B)/(Z-B)

Digital D(z) = [KP + KD(1-z"1) + KI/2(1-z"1)] *(1-B)/(Z-B)
KP, KD, KI, PL K = (KP + KD)

A = KD/(KP+KD)

C=KI2

B=PL

Continuous G(s)=(P + Ds +1/s) * a/s+a
PID, T P= KP

D=T*KD

[=KI/2T

a=1/T In(1/PL)

184 e Chapter 10 Theory of Operation DMC-40x0

THIS PAGE LEFT BLANK INTENTIONALLY

DMC-40x0 Chapter 10 Theory of Operation e 185

Appendices

Electrical Specifications

Servo Control
MCMn Amplifier Command:

+/-10 volt analog signal. Resolution 16-bit DAC or
0.0003 volts. 3 mA maximum.

Output impedance — 500Q2

MA-+MA-MB+ MB-,MI+,MI- Encoder andTTL compatible, but can accept up to +/-12 volts.

Auxiliary

Stepper Control
STPn (Step)

DIRn (Direction)

Input / Output

Limit Switch Inputs, Home Inputs.

DI1 thru DI8 Uncommitted Inputs and
Abort Input

DI9 thru DI16 Uncommitted Inputs
(DMC-4050 through DMC-4080 only)

Al thru AI8 Analog Inputs:

DO1 thru DOS Outputs:
DO9 thru DO16 Outputs:
(DMC-4050 through DMC-4080 only)

Quadrature phase on CHA, CHB. Can accept single-
ended (A+,B+ only) or differential (A+,A-,B+,B-).
Maximum A, B edge rate: 12 MHz. Minimum IDX pulse
width: 80 nsec.

TTL (0-5 volts) level at 50% duty cycle. 3,000,000
pulses/sec maximum frequency

TTL (0-5 volts)

2.2K ohm in series with opto-isolator. Active high or low
requires at least ImA to activate. Once activated, the
input requires the current to go below 0.5ma. All Limit
Switch and Home inputs use one common voltage
(LSCOM) which can accept up to 24 volts. Voltages
above 24 volts require an additional resistor.

>1mA=0N; <0.5mA=OFF
Standard configuration is +/-10 volts. 12-Bit Analog-to-
Digital converter. 16-bit optional.
High power Opto-Isolated — 500mA souring
High power Opto-Isolated — 500mA sourcing

186 e Appendices

DMC-40x0

1017 thru 1048

DIg&1, DI§2

DI&3, DIg4
(DMC-4020 through DMC-4080 only)

DI85, DI86
(DMC-4030 through DMC-4080 only)

DI87, DI88
(DMC-4040 through DMC-4080 only)

DIg9, DI90
(DMC-4050 through DMC-4080 only)

DI91, DI92
(DMC-4060 through DMC-4080 only)

DI93, D194
(DMC-4070 through DMC-4080 only)

DI95, D196
(DMC-4080 only)

Power Requirements

20-80 VDC 12-16W at 25C

Extended configurable /0O
Standard 3.3V logic with 5V option

Auxiliary Encoder Inputs for A (X) axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for B (Y) axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for C (Z) axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for D (W) axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for E axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for F axis. Line Receiver Inputs
- accepts differential or single ended voltages with voltage
range of +/- 12 volts.

Auxiliary Encoder Inputs for G axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for H axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

DMC-40x0

Appendices o 187

Performance Specifications

Minimum Servo Loop Update Time:

Minimum Servo Loop Update Time:
DMC-4010
DMC-4020
DMC-4030
DMC-4040
DMC-4050
DMC-4060
DMC-4070
DMC-4080
Position Accuracy:
Velocity Accuracy:

Long Term

Short Term
Position Range:

Velocity Range:

Velocity Resolution:

Motor Command Resolution:
Variable Range:

Variable Resolution:

Array Size:

Program Size:

Normal Fast Firmware
62.5 psec 31.25 usec

62.5 psec 31.25 usec

125 psec 62.5 psec

125 psec 62.5 psec

156.25 usec 93.75 psec

156.25 psec 93.75 usec

187.5 psec 125 pusec

187.5 usec 125 usec

+/-1 quadrature count

Phase-locked, better than 0.005%
System dependent
+/-2147483647 counts per move

Up to 22,000,000 counts/sec servo;
6,000,000 pulses/sec-stepper

2 counts/sec

16 bit or 0.0003 V

+/-2 billion

1-10-4

16000 elements, 30 arrays
2000 lines x 80 characters

188 e Appendices

DMC-40x0

Fast Update Rate Mode

The DMC-40x0 can operate with much faster servo update rates than the default of every millisecond. This mode is

known as ‘fast mode’ and allows the controller to operate with the following update rates:

DMC-4010
DMC-4020
DMC-4030
DMC-4040
DMC-4050
DMC-4060
DMC-4070
DMC-4080

31.25 psec
31.25 psec
62.5 psec
62.5 usec
93.75 psec
93.75 usec
125 psec
125 psec

In order to run the DMC-40x0 motion controller in fast mode, the fast firmware must be uploaded. This can be done
through the Galil terminal software such as DMCTERM and WSDK. The fast firmware is included with the

original DMC-40x0 utilities.

In order to set the desired update rates, use the command TM.

When the controller is operating with the fast firmware, the following functions are disabled:

Gearing mode

Ecam mode

Pole (PL)

Analog Feedback (AF)

Stepper Motor Operation (MT 2,-2,2.5,-2.5)

Trippoints in thread 2-8

Tell Velocity Interrogation Command (TV)

Aux Encoders (TD)

Dual Velocity (DV)

Peak Torque Limit (TK)
Notch Filter (NB, NF, NZ)

DMC-40x0

Appendices o 189

Power Connectors for the DMC-40x0

Overview

The DMC-40x0 uses Molex Pitch Mini-Fit, Jr.™ Receptacle Housing connectors for connecting DC Power to the
Amplifiers, Controller, and Motors. This section gives the specifications of these connectors. For information
specific to your Galil amplifier or driver, refer to the specific amplifier/driver in the Integrated Amplifiers and

Drivers section.

Molex Part Numbers Used

There are 3 different Molex connectors used with the DMC-40x0. The type of connectors on any given controller
will be determined be the Amplifiers/Drivers that were ordered. Below are tables indicating the type of Molex
Connectors used and the specific part numbers used on each Amplifier or Driver. For more information on the

connectors, go to http:/www.molex.com/.

Note: These part numbers list the connectors that are found on the controller. For more information see the Molex

website.

Molex Part Number Crimp Part Number Type
39-31-0060 44476-3112 6 Position
39-31-0040 44476-3112 4 Position
39-31-0020 44476-3112 2 Position
Galil Amplifier / Driver Molex Part Number Type
None 39-31-0020 2 Position
Power 39-31-0060 6 Position
AMP-43040
Motor 39-31-0040 4 Position
Power 39-31-0040 4 Position
AMP-43140
Motor 39-31-0020 2 Position
Power 39-31-0060 6 Position
SDM-44040
Motor 39-31-0040 4 Position
Power 39-31-0060 6 Position
SMD-44140
Motor 39-31-0040 4 Position

190 e Appendices

DMC-40x0

Connectors for ICM-42000 Interconnect Board

ICM-42000 1/O (A-D) 44 pin D-Sub Connector (Female)

Pin Label Description Pin Label Description Pin Label Description
1 ERR Error Output 16 RST Reset Input 31 GND Digital Ground
2 DIl Digital Input 1/ A latch 17 INCOM Input Common 32 DI2 Digital Input 2 / B latch
3 DI4 Digital Input 4 / D latch 18 DI3 Digital Input 3 / C latch 33 DI5 Digital Input 5
4 DI7 Digital Input 7 19 DI6 Digital Input 6 34 DI8 Digital Input 8
5 ELO Electronic Lock Out 20 ABRT Abort Input 35 GND Digital Ground
6 LSCOM Limit Switch Common 21 N/C No Connect 36 FLSA Forward Limit Switch A
7 HOMA Home Switch A 22 RLSA Reverse Limit Switch A 37 FLSB Forward Limit Switch B
8 HOMB Home Switch B 23 RLSB Reverse Limit Switch B 38 FLSC Forward Limit Switch C
9 HOMC Home Switch C 24 RLSC Reverse Limit Switch C 39 FLSD Forward Limit Switch D
10 HOMD Home Switch D 25 RLSD Reverse Limit Switch D 40 GND Digital Ground
11 OPWR Output Power 26 N/C No Connect 41 DO1 Digital Output 1
12 DO3 Digital Output 3 27 DO2 Digital Output 2 42 DO4 Digital Output 4
13 DO6 Digital Output 6 28 DOS5 Digital Output 5 43 DO7 Digital Output 7
14 ORET Output Return 29 DOS8 Digital Output 8 44 CMP Output Compare
15 +5V +5V from Controller 30 +5V +5V
ICM-42000 DMC-40x0 1/0 (E-H) 44 pin D-Sub Connector (Female)
4080 For DMC-4050 thru DMC-4080 controllers only.
Pin Label Description Pin Label Description Pin Label Description
1 ERR Error Output 16 RST Reset Input 31 GND Digital Ground
2 DI9 Digital Input 9 / E latch 17 INCOM Input Common 32 DI10 Digital Input 10 / F latch
3 DI12 Digital Input 12/H latch 18 DI11 Digital Input 11 / G latch 33 DI13 Digital Input 13
4 DILS Digital Input 15 19 DIl4 Digital Input 14 34 DIl6 Digital Input 16
5 ELO Electronic Lock Out 20 ABRT Abort Input 35 GND Digital Ground
6 LSCOM Limit Switch Common 21 N/C No Connect 36 FLSE Forward Limit Switch E
7 HOME Home Switch E 22 RLSE Reverse Limit Switch E 37 FLSF Forward Limit Switch F
8 HOMF Home Switch F 23 RLSF Reverse Limit Switch F 38 FLSG Forward Limit Switch G
9 HOMG Home Switch G 24 RLSG Reverse Limit Switch G 39 FLSH Forward Limit Switch H
10 HOMH Home Switch H 25 RLSH Reverse Limit Switch H 40 GND Digital Ground
11 OPWR Output Power 26 N/C No Connect 41 DO9 Digital Output 9
12 DO11 Digital Output 11 27 DO10 Digital Output 10 42 DO12 Digital Output 12
13 DO14 Digital Output 14 28 DO13 Digital Output 13 43 DO15 Digital Output 15
14 ORET Output Return 29 DO16 Digital Output 16 44 CMP Output Compare
15 +5V +5V from Controller 30 +5V +5V
DMC-40x0 Appendices o 191

ICM-42000 External Driver (A-D) 44 pin D-Sub Connector (Male)

Pin Label Description Pin Label Description Pin Label Description

1 RES Reserved 16 STPA PWM / Step A 31 STPB PWM / Step B

2 STPC PWM / Step C 17 RES Reserved 32 RES Reserved

3 RES Reserved 18 STPD PWM / Step D 33 GND Digital Ground

4 RES Reserved 19 DIRA Sign / Direction A 34 DIRB Sign / Direction B

5 DIRC Sign / Direction C 20 RES Reserved 35 RES Reserved

6 RES Reserved 21 DIRD Sign / Direction D 36 GND Digital Ground

7 AENA Amplifier Enable A 22 AECI1 Amp Enable Common 1 37 AENB Amplifier Enable B

8 AEND Amplifier Enable D 23 AENC Amplifier Enable C 38 AEC2 Amp Enable Common 2
9 N/C No Connect 24 N/C No Connect 39 GND Digital Ground

10 -12v -12V from Controller 25 +12V +12V from Controller 40 MCMA Motor Command A

11 MCMB Motor Command B 26 RES Reserved / MCMDA N ! 41 RES Reserved / MCMDB_ N !
12 RES Reserved / MCMDC_N ! 27 MCMC Motor Command C 42 MCMD Motor Command D

13 N/C No Connect 28 RES Reserved / MCMDD_N "oa3 GND Digital Ground

14 N/C No Connect 29 N/C No Connect 44 N/C No Connect

15 +5V +5V from Controller 30 N/C No Connect

ICM-42000 External Driver (E-H) 44 pin D-Sub Connector (Male)
For DMC-4050 thru DMC-4080 controllers only.

080
Pin Label Description Pin Label Description Pin Label Description
1 RES Reserved 16 STPE PWM /Step E 31 STPF PWM / Step F
2 STPG PWM /Step G 17 RES Reserved 32 RES Reserved
3 RES Reserved 18 STPH PWM / Step H 33 GND Digital Ground
4 RES Reserved 19 DIRE Sign / Direction E 34 DIRF Sign / Direction F
5 DIRF Sign / Direction F 20 RES Reserved 35 RES Reserved
6 RES Reserved 21 DIRH Sign / Direction H 36 GND Digital Ground
7 AENE Amplifier Enable E 22 AEC1 Amp Enable Common 1 37 AENF Amplifier Enable F
8 AENH Amplifier Enable H 23 AENG Amplifier Enable G 38 AEC2 Amp Enable Common 2
9 N/C No Connect 24 N/C No Connect 39 GND Digital Ground
10 -12v -12V from Controller 25 +12V +12V from Controller 40 MCME Motor Command E
11 MCMF Motor Command F 26 RES Reserved / MCMDE N ! 41 RES Reserved / MCMDF_N !
12 RES Reserved / MCMDG N ! 27 MCMG Motor Command G 42 MCMH Motor Command H
13 N/C No Connect 28 RES Reserved / MCMDH_N ! 43 GND Digital Ground
14 N/C No Connect 29 N/C No Connect 44 N/C No Connect
15 +5V +5V from Controller 30 N/C No Connect
Notes:

1 Negative differential motor command outputs when (DIFF) option is ordered on ICM. Ex DMC-4040-C012-1000(DIFF).
These pins may be used for other functions when (DIFF) option is not ordered.

192 e Appendices

DMC-40x0

ICM-42000 Encoder 15 pin D-Sub Connector (Female)

Pin # Label Description

1 MI+ Index Pulse

2 MB+ B+ Main Encoder Input
3 MA+ A+ Main Encoder Input
4 AB+ B+ Aux Encoder Input
5 GND Digital Ground

6 MI- /Index Pulse

7 MB- B- Main Encoder Input
8 MA- A- Main Encoder Input
9 AA- A- Aux Encoder Input
10 HALA A Channel Hall Sensor
11 AA+ A+ Aux Encoder Input
12 AB- B- Aux Encoder Input
13 HALB B Channel Hall Sensor
14 HALC C Channel Hall Sensor
15 +5V +5V from Controller

ICM-42000 Analog 15 pin D-sub Connector (Male)

Pin # Label Description

1 AGND Analog Ground

2 All Analog Input 1

3 Al3 Analog Input 3

4 Al5 Analog Input 5

5 Al7 Analog Input 7

6 AGND Analog Ground

7 -12v -12V from Controller
8 +5V +5V from Controller
9 AGND Analog Ground

10 Al2 Analog Input 2

11 Al4 Analog Input 4

12 Al6 Analog Input 6

13 A8 Analog Input 8

14 N/C No Connect

15 +12V +12V from Controller

DMC-40x0

Appendices o 193

Connectors for ICM-42200 Interconnect Board

ICM-42200 1/0O (A-D) 44 pin D-Sub Connector (Female)

Pin Label Description Pin Label Description Pin Label Description
1 ERR Error Output 16 RST Reset Input 31 GND Digital Ground
2 DIl Digital Input 1/ A latch 17 INCOM Input Common 32 DI2 Digital Input 2 / B latch
3 DI4 Digital Input 4 / D latch 18 DI3 Digital Input 3 / C latch 33 DI5 Digital Input 5
4 DI7 Digital Input 7 19 DI6 Digital Input 6 34 DI8 Digital Input 8
5 ELO Electronic Lock Out 20 ABRT Abort Input 35 GND Digital Ground
6 LSCOM Limit Switch Common 21 N/C No Connect 36 FLSA Forward Limit Switch A
7 HOMA Home Switch A 22 RLSA Reverse Limit Switch A 37 FLSB Forward Limit Switch B
8 HOMB Home Switch B 23 RLSB Reverse Limit Switch B 38 FLSC Forward Limit Switch C
9 HOMC Home Switch C 24 RLSC Reverse Limit Switch C 39 FLSD Forward Limit Switch D
10 HOMD Home Switch D 25 RLSD Reverse Limit Switch D 40 GND Digital Ground
11 OPWR Output Power 26 N/C No Connect 41 DO1 Digital Output 1
12 DO3 Digital Output 3 27 DO2 Digital Output 2 42 DO4 Digital Output 4
13 DO6 Digital Output 6 28 DOS5 Digital Output 5 43 DO7 Digital Output 7
14 ORET Output Return 29 DOS8 Digital Output 8 44 CMP Output Compare
15 +5V +5V 30 +5V +5V
ICM-42200 DMC-40x0 1/0 (E-H) 44 pin D-Sub Connector (Female)
4080 For DMC-4050 thru DMC-4080 controllers only.
Pin Label Description Pin Label Description Pin Label Description
1 ERR Error Output 16 RST Reset Input 31 GND Digital Ground
2 DI9 Digital Input 9 / E latch 17 INCOM Input Common 32 DI10 Digital Input 10 / F latch
3 DI12 Digital Input 12/H latch 18 DI11 Digital Input 11 / G latch 33 DI13 Digital Input 13
4 DILS Digital Input 15 19 DIl4 Digital Input 14 34 DIl6 Digital Input 16
5 ELO Electronic Lock Out 20 ABRT Abort Input 35 GND Digital Ground
6 LSCOM Limit Switch Common 21 N/C No Connect 36 FLSE Forward Limit Switch E
7 HOME Home Switch E 22 RLSE Reverse Limit Switch E 37 FLSF Forward Limit Switch F
8 HOMF Home Switch F 23 RLSF Reverse Limit Switch F 38 FLSG Forward Limit Switch G
9 HOMG Home Switch G 24 RLSG Reverse Limit Switch G 39 FLSH Forward Limit Switch H
10 HOMH Home Switch H 25 RLSH Reverse Limit Switch H 40 GND Digital Ground
11 OPWR Output Power 26 N/C No Connect 41 DO9 Digital Output 9
12 DO11 Digital Output 11 27 DO10 Digital Output 10 42 DO12 Digital Output 12
13 DO14 Digital Output 14 28 DO13 Digital Output 13 43 DO15 Digital Output 15
14 ORET Output Return 29 DO16 Digital Output 16 44 CMP Output Compare
15 +5V +5V 30 +5V +5V
194 e Appendices DMC-40x0

ICM-42200 Encoder 26 pin D-Sub Connector (Female)

Pin # Label Description Pin # Label Description

1 RES Reserved ! 14 FLS Forward Limit Switch Input
2 AEN Amplifier Enable 15 AB+ B+ Aux Encoder Input

3 DIR Direction 16 MI- /Index Pulse Input

4 HOM Home 17 MB+ B+ Main Encoder Input

5 LSCOM Limit Switch Common 18 GND Digital Ground

6 AA- A- Aux Encoder Input 19 MCMD Motor Command

7 MI+ Index Pulse Input 20 ENBL+ Amp Enable Power

8 MA- A- Main Encoder Input 21 RES Reserved

9 +5V +5V From Controller 22 RLS Reverse Limit Switch Input
10 GND Digital Ground 23 AB- B- Aux Encoder Input

11 ENBL- Amp Enable Return 24 AA+ A+ Aux Encoder Input

12 RES Reserved 2 25 MB- B- Main Encoder Input

13 STP PWM/Step 26 MA+ A+ Main Encoder Input

ICM-42200 Analog 15 pin D-sub Connector (Male)

Notes:

Pin # Label Description

1 AGND Analog Ground

2 All Analog Input 1

3 Al3 Analog Input 3

4 Al5 Analog Input 5

5 Al7 Analog Input 7

6 AGND Analog Ground

7 -12v -12V from Controller
8 +5V +5V from Controller
9 AGND Analog Ground

10 Al2 Analog Input 2

11 Al4 Analog Input 4

12 Al6 Analog Input 6

13 Al8 Analog Input 8

14 N/C No Connect

15 +12V +12V from Controller

1 Negative differential motor command output when (DIFF) option is ordered on ICM. Ex DMC-4040-C012-1200(DIFF).
Hall Input 2 when ordered with internal amplifier AMP-43040. Ex DMC-4040-C012-1200-D3040

Connected to GND in standard configuration.

2 Hall Input 1 when ordered with internal amplifier AMP-43040. Ex DMC-4040-C012-1200-D3040

Connected to GND in standard configuration.

3 Hall Input 0 when ordered with internal amplifier AMP-43040. Ex DMC-4040-C012-1200-D3040

Connected to GND in standard configuration.

DMC-40x0

Appendices o 195

Connectors for CMB-41012 Interconnect Board

CMB-41012 Extended 1/0O 44 pin D-Sub Connector (Male)

Pin Label Description Pin Label Description Pin Label Description
1 1018 Configurable I/O bit 18 16 1017 Configurable I/0O bit 17 31 1019 Configurable I/O bit 19
2 1021 Configurable I/O bit 21 17 1020 Configurable 1/0 bit 20 32 1022 Configurable 1/0 bit 22
3 1024 Configurable I/0O bit 24 18 1023 Configurable 1/0 bit 23 33 GND Digital Ground
4 1026 Configurable I/0O bit 26 19 1025 Configurable I/0 bit 25 34 1027 Configurable I/0 bit 27
5 1029 Configurable I/O bit 29 20 1028 Configurable 1/0 bit 28 35 1030 Configurable 1/0 bit 30
6 1032 Configurable I/0O bit 32 21 1031 Configurable I/O bit 31 36 GND Digital Ground
7 1033 Configurable I/O bit 33 22 N/C No Connect 37 1034 Configurable 1/0 bit 34
8 1036 Configurable I/0 bit 36 23 1035 Configurable I/O bit 35 38 N/C No Connect
9 1038 Configurable I/0 bit 38 24 1037 Configurable 1/0 bit 37 39 GND Digital Ground
10 N/C No Connect 25 N/C No Connect 40 1039 Configurable 1/0 bit 39
11 1041 Configurable I/0 bit 41 26 1040 Configurable 1/0 bit 40 41 1042 Configurable 1/0 bit 42
12 1044 Configurable I/O bit 44 27 1043 Configurable I/O bit 43 42 1045 Configurable I/O bit 45
13 1047 Configurable I/O bit 47 28 1046 Configurable 1/O bit 46 43 GND Digital Ground
14 N/C No Connect 29 1048 Configurable I/O bit 48 44 N/C No Connect
15 RES Reserved ' 30 | 433V +33v 2
RS-232-Main Port (Male)
Standard connector and cable, 9Pin

Pin Signal

1 No Connect

2 Transmit data-output

3 Receive data-input

4 No Connect

5 GND

6 No Connect

7 RTS — input

8 CTS — output

9 N/C — No Connect

Notes:

1
2

Baud Rate Jumper Settings

19.2 38.4 BAUD RATE
ON ON 9600
ON OFF 19200
OFF ON 38400
OFF OFF 115200

5V when (5V) option is ordered on CMB. Ex DMC-4040-C012(5V)-1200

Reserved when (5V) option is ordered on CMB

196 e Appendices

DMC-40x0

RS-232-Auxiliary Port (Female)

Standard connector and cable, 9Pin

Pin

Signal

CTS — input

Transmit data-input

Receive data-output

RTS — output

GND

CTS — input

RTS — output

CTS — input

Clo| Q||| |wW| D] —

NC (5V with APWR Jumper)

RS-422-Main Port (Non-Standard Option)

Standard connector and cable when DMC-40x0 is ordered with RS-422 Option.

Pin

Signal

RTS-

RTS+

TXD-

TXD+

RXD-

RXD+

CTS-

CTS+

Ol ||| |WL[IN]|—

GND

RS-422-Auxiliary Port (Non-Standard Option)

Standard connector and cable when DMC-40x0 is ordered with RS-422 Option.

Pin

Signal

CTS-

CTS+

RXD-

RXD+

TXD-

TXD+

RTS-

RTS+

Ol Q||| |W[D|—

GND

DMC-40x0

Appendices o 197

Ethernet
100 BASE-T/10 BASE-T - Kycon GS-NS-88-3.5

Pin Signal

TXP

TXN

NC

NC

NC

||| |WIN =

NC

10 BASE-2- AMP 227161-7
10 BASE-F- HP HFBR-1414 (TX, Transmitter)
HP HFBR-2416 (RX, Receiver)

Jumper Description for ICM-42000 and CMB-41012

Jumper Label Function (If jumpered)
Communications OPT Reserved

MO When controller is powered on or reset, Amplifier Enable
lines will be in a Motor Off state. A SH will be required to
re-enable the motors.

38.4K Baud Rate setting — see table above

19.2K Baud Rate setting — see table above

UPGD Used to upgrade controller firmware when resident firmware
is corrupt.

MRST Master Reset enable. Returns controller to factory default
settings and erases EEPROM. Requires power-on or RESET
to be activated.

Amplifier Enable GND Connect AECOM1 or AECOM2 to Digital Ground

+5V Connect AECOM1 or AECOM2 to Controller +5V

+12V Connect AECOM1 or AECOM2 to Controller +12V

AEC1 Connect AECOM1 to AECI1 pin on External Driver D-Sub

AEC2 Connect AECOM2 to AEC2 pin on External Driver D-Sub

198 e Appendices

DMC-40x0

Cable Connections for DMC-40x0

The DMC-40x0 requires the transmit, receive, and ground for slow communication rates. (i.e. 9600 baud) For faster

rates the handshake lines are required. The connection tables below contain the handshake lines.

Standard RS-232 Specifications

25 pin Serial Connector (Male, D-type)

This table describes the pinout for standard serial ports found on most computers.

Pin Number Function

1 NC

2 Transmitted Data

3 Received Data

4 Request to Send

5 Clear to Send

6 Data Set Ready

7 Signal Ground

8 Carrier Detect

9 +Transmit Current Loop Return
10 NC

11 -Transmit Current Loop Data
12 NC

13 NC

14 NC

15 NC

16 NC

17 NC

18 +Receive Current Loop Data
19 NC

20 Data Terminal Ready

21 NC

22 Ring Indicator

23 NC

24 NC

25 -Receive Current Loop Return

DMC-40x0

Appendices o 199

9 Pin Serial Connector (Male, D-type)

Standard serial port connections found on most computers.

Pin Number

Function

Carrier Detect

Receive Data

Transmit Data

Data Terminal Ready

Signal Ground

Data Set Ready

Request to Send

Clear to Send

O |l |Q ||| |J]wW]N]|—

Ring Indicator

DMC-40x0 Serial Cable Specifications

Cable to Connect Computer 25 pin to Main Serial Port

Cable to Connect Computer 9 pin to Main Serial Port Cable (9 pin)
9 Pin (FEMALE - Controller)

Cable to Connect Computer 25 pin to Auxil

25 Pin (Male - computer)

9 Pin (female - controller)

8 (Carrier Detect)

1

3 (Receive Data)

2 (Transmit Data)

20 (Data Terminal Ready)

7 (Signal Ground)

Controller Ground

N=2 IV, T B SN IS I \S)

9 Pin (FEMALE - Computer)

2 (Receive Data) 2
3 (Transmit Data) 3
5 (Signal Ground) 5
7 (RTS) 7
8 (CTS) 8

iary Serial Port Cable (9 pin)

25 Pin (Male - terminal)

9 Pin (male - controller)

20 (Data Terminal Ready)

2 (Transmit Data)

3 (Receive Data)

8 (Carrier Detect)

7 (Signal Ground)

Controller +5V

Ol |W]|ND|~—

200 e Appendices

DMC-40x0

Cable to Connect Computer 9 pin to Auxiliary Serial Port Cable (9 pin)

9 Pin (FEMALE - terminal)

9 Pin (MALE - Controller)

4 (Data Terminal Ready)

3 (Transmit Data)

2 (Receive Data)

1 (Carrier Detect)

5 (Signal Ground)

Controller +5V

Ol | |W]|ND |~

Pin-Out Description for DMC-40x0

Outputs

Motor Command

+/- 10 Volt range signal for driving amplifier. In servo mode,
motor command output is updated at the controller sample rate. In
the motor off mode, this output is held at the OF command level.

Amplifier Enable

Signal to disable and enable an amplifier. Amp Enable goes low
on Abort and OE1.

PWM / Step

PWM/STEP OUT is used for directly driving power bridges for
DC servo motors or for driving step motor amplifiers. For servo
motors: If you are using a conventional amplifier that accepts a
+/-10 Volt analog signal, this pin is not used and should be left
open. The PWM output is available in two formats: Inverter and
Sign Magnitude. In the Inverter mode, the PWM (64kHz) signal
is .2% duty cycle for full negative voltage, 50% for 0 Voltage and
99.8% for full positive voltage (64kHz Switching Frequency). In
the Sign Magnitude Mode (MT1.5), the PWM (128 kHz) signal is
0% for 0 Voltage, 99.6% for full voltage and the sign of the Motor
Command is available at the sign output (128kHz Switching
Frequency).

PWM / Step

For stepper motors: The STEP OUT pin produces a series of
pulses for input to a step motor driver. The pulses may either be
low or high. The pulse width is 50%.

Sign / Direction

Used with PWM signal to give the sign of the motor command for
servo amplifiers or direction for step motors.

Error

The signal goes low when the position error on any axis exceeds
the value specified by the error limit command, ER.

Output 1-Output 8
Output 9-Output 16
(DMC-4050 thru 4080)

The high power optically isolated outputs are uncommitted and
may be designated by the user to toggle relays and trigger external
events. The output lines are toggled by Set Bit, SB, and Clear Bit,
CB, instructions. The OP instruction is used to define the state of
all the bits of the Output port.

DMC-40x0

Appendices o 201

Inputs

Encoder, MA+, MB+

Position feedback from incremental encoder with two channels in
quadrature, CHA and CHB. The encoder may be analog or TTL.
Any resolution encoder may be used as long as the maximum
frequency does not exceed 22,000,000 quadrature states/sec. The
controller performs quadrature decoding of the encoder signals
resulting in a resolution of quadrature counts (4 x encoder cycles).
Note: Encoders that produce outputs in the format of pulses and
direction may also be used by inputting the pulses into CHA and
direction into Channel B and using the CE command to configure
this mode.

Encoder Index, MI+

Once-Per-Revolution encoder pulse. Used in Homing sequence or
Find Index command to define home on an encoder index.

Encoder, MA-, MB-, MI-

Differential inputs from encoder. May be input along with CHA,
CHB for noise immunity of encoder signals. The CHA- and CHB-
inputs are optional.

Auxiliary Encoder, AA+,
AB+, Aux A-, Aux B-

Inputs for additional encoder. Used when an encoder on both the
motor and the load is required. Not available on axes configured
for step motors.

Abort A low input stops commanded motion instantly without a
controlled deceleration. Also aborts motion program.
Reset A low input resets the state of the processor to its power-on

condition. The previously saved state of the controller, along with
parameter values, and saved sequences are restored.

Electronic Lock Out

Input that when triggered will shut down the amplifiers at a
hardware level. Useful for safety applications where amplifiers
must be shut down at a hardware level.

Forward Limit Switch

When active, inhibits motion in forward direction. Also causes
execution of limit switch subroutine, #LIMSWI. The polarity of
the limit switch may be set with the CN command.

Reverse Limit Switch

When active, inhibits motion in reverse direction. Also causes
execution of limit switch subroutine, #LIMSWI. The polarity of
the limit switch may be set with the CN command.

Home Switch

Input for Homing (HM) and Find Edge (FE) instructions. Upon
BG following HM or FE, the motor accelerates to slew speed. A
transition on this input will cause the motor to decelerate to a stop.
The polarity of the Home Switch may be set with the CN
command.

Input 1 - Input 8 isolated
Input 9 - Input 16 isolated

Uncommitted inputs. May be defined by the user to trigger
events. Inputs are checked with the Conditional Jump instruction
and After Input instruction or Input Interrupt. Input 1 is latch X,
Input 2 is latch Y, Input 3 is latch Z and Input 4 is latch W if the
high speed position latch function is enabled.

Latch

High speed position latch to capture axis position on occurrence of]
latch signal. AL command arms latch. Input 1 is latch X, Input 2
is latch Y, Input 3 is latch Z and Input 4 is latch W. Input 9 is
latch E, input 10 is latch F, input 11 is latch G, input 12 is latch H.

202 e Appendices

DMC-40x0

Configuring the Amplifier Enable Circuit

ICM-42000 and ICM-42100

The following section details the steps needed to change the amplifier enable configuration for the DMC-40x0
controller with an ICM-42000 or ICM-42100. For detailed instruction on changing the amplifier enable
configuration on a DMC-40x0 with an ICM-42200 see the section in Chapter 3 labeled ICM-42200 Amplifier
Enable Configuration. For electrical details about the amplifier enable circuit, see the ICM-42000 and ICM-42100
Amplifier Enable Circuit section in Chapter 3.

For DMC-4080 refer to DMC-4080 (Steps 1 and 2) section below.

NOTE: From the default configuration, the configuration for +12V High Amp Enable Sinking Configuration does
not require the remove of the metal cover. This can be achieved by simply changing the jumpers.

DMC-4040 (Steps 1 and 2)

Step 1: Remove Cover

Notes:
1. Cover Removal:
A. Remove Jack Screws (20 Places)
B. Remove #6-32x3/16” Button Head Cover Screws (4 Places)
2. Lift Cover Straight Up and Away from Unit.

REMOVE JACK SCREWS
20 PLCS

REMOVE COVER SCREWS
4 PLCS

DMC-40x0 Appendices ¢ 203

Step 2: Remove ICM

/REMO\’E ICM

For DMC-4040 — Proceed to Step 3: Configure Circuit

DMC-40x0

204 e Appendices

DMC-4080 (Steps 1 and 2)

Step 1: Remove Cover

Notes:
1. Cover Removal:
A. Remove Jack Screws (34 Places)
B. Remove #6-32x3/16” Button Head Cover Screws (4 Places)
2. Lift Cover Straight Up and Away from Unit.

REMOVE JACK SCREWS
34 PLCS

REMOVE COVER SCREWS
4 PLCS

DMC-40x0 Appendices ¢ 205

Remove ICM(s)

Step 2

REMOVE ICM(S)

DMC-40x0

206 e Appendices

DMC-4040 and DMC-4080 (Step 3)

Step 3: Configure Circuit

Reference the instructions below for the desired configuration, and then proceed to Step 4.

+5V High Amp Enable Sinking Configuration (Default) pg 208
+5V Low Amp Enable Sinking Configuration pg 208

+5V High Amp Enable Sourcing Configuration pg 209

+5V Low Amp Enable Sourcing Configuration pg 209
+12V High Amp Enable Sinking Configuration pg 210
+12V Low Amp Enable Sinking Configuration pg 210

+12V High Amp Enable Sourcing Configuration pg 211

+12V Low Amp Enable Sourcing Configuration pg 211

Isolated Power High Amp Enable Sinking Configuration pg 212

Isolated Power Low Amp Enable Sinking Configuration pg 212

Isolated Power High Amp Enable Sourcing Configuration pg 213

Isolated Power Low Amp Enable Sourcing Configuration pg 213

DMC-40x0

Appendices o 207

+5V High Amp Enable Sinking Configuration (Default)

JP2
T SHUNT AT GND

JP1

SHUNT AT +5V

Default Configuration Shipped with controller when no

specific setup is ordered.

s_.uo.uo BOBBBABADA
COOONO0ODAT 0000
BABAGABABABAGA

@

& Sea6a viinvn
efoocooodocoDOD
LELEETE) _sc_s_uo

@E gSHcN-42000 °

AN

RP2 PIN 1~ |

+5V Low Amp Enable Sinking Configuration

From Default Configuration:

JP2
f’S—UNT AT GND

JP1

SHUNT AT +5V

Reverse RP2

O -

06800990
geseaos

,[]©°

O N TE)

Eﬁﬁ%ﬁ.

aaavooaavoo

©

aaa cacosanonanD
copooococoCEEn R =]
[ELLLLLLLLLLLY)

-3

S

01 W3

Zoossscnos

@H ﬁrm—mm

2 PIN 1—

RP

DMC-40x0

208 e Appendices

+5V High Amp Enable Sourcing Configuration

JP2
ll'_ SHUNT AT +5V

JP1

SHUNT AT GND

From Default Configuration:

Move U4 up one pin location on socket

Reverse RP2

Change JP1 to GND

3.

Change JP2 to +5V

4,

Gecesssscasasaca
COBGNG0O0O000G0E
copococaBaAES on

@

=]

(=]

S

hi
=uv
OF
OFi [
= 2
T
a

RP2 PIN 1—T =

JP2

+5V Low Amp Enable Sourcing Configuration
TSHUNT AT +5V

JP1

SHUNT AT GND

From Default Configuration:

Move U4 up one pin location on socket

Change JP1 to GND
Change JP2 to +5V

2.

3.

@

ooo coapagapagoca
COCO0O0R000a00 0N
BOGOGABABABA0A

m”,.”._”.”._”.wma

J2
@ F @hov-42000

ofi i,

RP2 PIN 1— |

Appendices ¢ 209

DMC-40x0

+12V High Amp Enable Sinking Configuration

(Does not require the removal of Metal)

JP2
[T SHUNT AT GND

JP1

SHUNT AT +12V

From Default Configuration:

Change JP1 to +12V

ooooo ILITITLILY]
L L L L L L =
BOGABO6ABABA0E

@E qShiou-42000 °

b aﬂavnyﬁﬂlﬂaon
efoocooodocoDOD
COCAGOEUBABAG

AN

RP2 PN 1~] |

+12V Low Amp Enable Sinking Configuration

JP2
[T SHUNT AT GND

JP1

SHUNT AT +12V

From Default Configuration:

Reverse RP2

Change JP1 to +12V

2.

ooo CAGAGABADAGE
COCO0O0R000a00 0N
BOGOGABABABA0A

@E ﬁm—moo *

RPZ BIN 1— |

DMC-40x0

210 e Appendices

+12V High Amp Enable Sourcing Configuration

JP1 JP2
SHUNT AT GND [TSHUNT AT +12V

From Default Configuration:

ol —

1. Move U4 up one pin location on socket
5| nggg‘ 2 Reverse RP2
1© | 3. Change JP1 to GND
GG 4 Change JP2 to +12V
U4 PIN 1—] ==
B

COGALAGAEaGaGa
FOEOCOROOOEOEORD

LEELLELEE LT

RP2 PIN 1—

©

+12V Low Amp Enable Sourcing Configuration
JP1 JP2

SHUNT AT GND \ SHUNT AT +12V
||' From Default Configuration:
—@\1 1. Move U4 up one pin location on socket
i ?Eﬁ' 2. Change JP1 to GND
s 3. Change JP2 to +12V

U4 PIN 1 ~4 |

L LT

FOCOOOOOBOOOOBAD
LEE- XN
[EEEEE-XT]

ANALDG

RP2 PIN 1—]

=
g, :
e

° ﬁ@mm-mmo °

DMC-40x0 Appendices o 211

Isolated Power High Amp Enable Sinking Configuration

JP1 JP2
SHUNT AT AECIH [TSHUNT AT AEC2
|

AEC1 = V+
AEC2 = V-
— For +5V to +12V, RP6 = 820 Ohms
i For +13V to +24V, RP6 = 4.7K Ohms
5 =

From Default Configuration:
1. Change JP1 to AEC1
2. Change JP2 to AEC2

3. If AECI is +13V to +24V, Replace RP6
with 4.7K Resistor Pack

RPZ PIN 1
RP6 PIN 1—~_]

| m— :
s
1 5
¥
a
3

GEMERAL |0
COLILARACICAD

75

LLLEE)
LELL

5

cogaca

U4 PIN 1—"

ssapapecocacde
GOOOGDODBOBDOD
COGORARACAGAnA

i

_I,
Es :nj
g
iy

L)

° @® W {eicu-42000 °

oaLIL REY C

Isolated Power Low Amp Enable Sinking Configuration

JP1 JP2
SHUNT AT AECIH ||'_ SHUNT AT AECZ

AEC1 = V+

AEC2 = V-

For +5V to +12V, RP6 = 820 Ohms
For +13V to +24V, RP6 = 4_7K Ohms

JAT

From Default Configuration:

1 Reverse RP2

2 Change JP1 to AEC1
3. Change JP2 to AEC2
4

If AEC1 is +13V to +24V, Replace RP6
with 4.7K Resistor Pack

U4 PIN 1—]
RPE PIN 71—

i 2572

GEMERAL 110
L LT

37

sasagacaca

O 00000000
COCOCAGAGOGaGA

apocopacocae

]
FOCOOOOOBOOOOBAD

L1
RPZ BIN 1—

212 e Appendices DMC-40x0

Isolated Power High Amp Enable Sourcing Configuration

JP1 JP2
SHUNT AT AEC1 I|'_ SHUNT AT AECZ2
|

AEC1 = V-
AEC2 = V+
5::-:5 For +5V to +12V, RP6 = 820 Ohms
=1 For +13V to +24V, RP6 = 4_.7K Ohms

From Default Configuration:

U4 PIN 1
N ©|. 1. Move U4 up one pin location on socket
RPE PIN 1— QD'BE
"ez2 |Io 2 Reverse RP2
g & % 3 Change JP1 to AEC1
8 & [4. Change JP2 to AEC2
il K 5 If AEC2 is +13V to +24V, Replace RP6
N with 4.7K Resistor Pack
GALL MOTHM M‘

° H@‘ICM—A’«E{}DO °

oaLIL REY C

Isolated Power Low Amp Enable Sourcing Configuration

JP1 JP2
SHUNT AT AECIH ||'_ SHUNT AT AECZ

AEC1 V-

AEC2 V+

For +5V to +12V, RP6 = 820 Ohms
For +13V to +24V, RP6 = 4.7K Ohms

JAT

From Default Configuration:

Ri; ::1 112-. ©m 1. Move U4 up one pin location on socket
K 2 Change JP1 to AEC1
3. Change JP2 to AEC2
4. IfAEC2is+I3V to +24V, Replace RP6
wazet with 4.7K Resistor Pack

DMC-40x0 Appendices ¢ 213

For Steps 4 and 5 with a DMC-4080 refer to DMC-4080 (Steps 4 and 5) section below.

DMC-4040 (Steps 4 and 5)
Step 4: Replace ICM

214 e Appendices DMC-40x0

Step 5: Replace Cover

Notes:
1. Cover Installation:
A. Install Jack Screws (20 Places)
B. Install #6-32x3/16” Button Head Cover Screws(4 Places)

REPLACE JACK SCREWS
20 PLCS

FREPLACE COVER SCREWS
4 PLCS

DMC-40x0 Appendices ¢ 215

DMC-4080 (Steps 4 and 5)

Step 4: Replace ICM(s)

REPLACE ICM(S)

DMC-40x0

216 e Appendices

Step 5: Replace Cover

Notes:
1. Cover Installation:
A. Install Jack Screws (34 Places)
B. Install #6-32x3/16” Button Head Cover Screws(4 Places)

REPLACE JACK SCREWS
34 PLCS

REPLACE COVER SCREWS
4 PLCS

DMC-40x0 Appendices ¢ 217

Coordinated Motion - Mathematical Analysis

The terms of coordinated motion are best explained in terms of the vector motion. The vector velocity, Vs, which is
also known as the feed rate, is the vector sum of the velocities along the X and Y axes, Vx and Vy.

Vs = 4/Vx? +Vy?

The vector distance is the integral of Vs, or the total distance traveled along the path. To illustrate this further,
suppose that a string was placed along the path in the X-Y plane. The length of that string represents the distance
traveled by the vector motion.

The vector velocity is specified independently of the path to allow continuous motion. The path is specified as a
collection of segments. For the purpose of specifying the path, define a special X-Y coordinate system whose origin
is the starting point of the sequence. Each linear segment is specified by the X-Y coordinate of the final point
expressed in units of resolution, and each circular arc is defined by the arc radius, the starting angle, and the angular
width of the arc. The zero angle corresponds to the positive direction of the X-axis and the CCW direction of
rotation is positive. Angles are expressed in degrees, and the resolution is 1/256th of a degree. For example, the
path shown in Fig. A.1 is specified by the instructions:

VP 0,10000
CR 10000, 180, -90
VP 20000, 20000
Y
20000 C D
10000 B
r' Y
A X

10000 20000
Figure A..1 - X-Y Motion Path

218 e Appendices DMC-40x0

The first line describes the straight line vector segment between points A and B. The next segment is a circular arc,
which starts at an angle of 180° and traverses -90°. Finally, the third line describes the linear segment between
points C and D. Note that the total length of the motion consists of the segments:

A-B Linear 10000 units
RAG27
B-C Circular ——— =15708
360
C-D Linear 10000
Total 35708 counts

In general, the length of each linear segment is

Lk -+ Xk? +Yk?

Where Xk and Yk are the changes in X and Y positions along the linear segment. The length of the circular arc is
Lk = Ri|A®K|2 7/360

The total travel distance is given by

D= Zn:Lk
k=1

The velocity profile may be specified independently in terms of the vector velocity and acceleration.

For example, the velocity profile corresponding to the path of Fig. A.2 may be specified in terms of the vector speed
and acceleration.

VS 100000
VA 2000000

The resulting vector velocity is shown in Fig. A.2.

Velocity

10000

time (s)

T 0.05 T 0.357 T, 0.407

a S

Figure A..2 - Vector Velocity Profile

The acceleration time, Ta, is given by
VS 100000
"7 VA 2000000

The slew time, Ts, is given by

0.05s

DMC-40x0 Appendices ¢ 219

D . 35708

Ts=——-Ta=
VS 100000

The total motion time, Tt, is given by:

Te= D +Ta=0.407s
VS

-0.05=0.307s

The velocities along the X and Y axes are such that the direction of motion follows the specified path, yet the vector
velocity fits the vector speed and acceleration requirements.

For example, the velocities along the X and Y axes for the path shown in Fig. A.1 are given in Fig. A.3.

Fig. A.3a shows the vector velocity. It also indicates the position point along the path starting at A and ending at D.
Between the points A and B, the motion is along the Y axis. Therefore,

Between the points B and C, the velocities vary gradually and finally, between the points C and D, the motion is in

B

Cc

Vy = Vs
and
Vx =0
the X direction.
A

(@)

(b)

()

Figure A.3 - Vector and Axes Velocities

time

220 e Appendices

DMC-40x0

Example- Communicating with OPTO-22 SNAP-B3000-ENET

Controller is connected to OPTO-22 via handle F. The OPTO-22’s IP address is 131.29.50.30. The Rack has the
following configuration:

Digital Inputs Module 1
Digital Outputs Module 2
Analog Outputs (+/-10V) Module 3
Analog Inputs (+/-10V) Module 4

Instruction Interpretation

#CONFIG Label
IHF=131,29,50,30<502>2 Establish connection
WT10 Wait 10 milliseconds

JP #CFGERR,_IHF2=0 Jump to subroutine

JS #CFGDOUT Configure digital outputs
JS #CFGAOUT Configure analog outputs
JS #CFGAIN Configure analog inputs
MBF = 6,6,1025,1 Save configuration to OPTO-22
EN End

#CFGDOUT Label

MODULE=2 Set variable
CFGVALUE=$180 Set variable

NUMOF10=4 Set variable

JP #CFGJOIN Jump to subroutine
#CFGAOUT Label

MODULE=3 Set variable
CFGVALUE=$A7 Set variable

NUMOF10=2 Set variable

JP #CFGJOIN Jump to subroutine
#CFGAIN Label

MODULE=5 Set variable
CFGVALUE=12 Set variable

NUMOF10=2 Set variable

JP#CFGJOIN Jump to subroutine
#CFGJOIN Label

DM A[8] Dimension array

1=0 Set variable

#CFGLOOP Loop subroutine

A[I]1=0 Set array element

I=1+1 Increment
A[1]=CFGVALUE Set array element

I=1+1 Increment

JP #CFGLOOP, I<(2*NUMOFI10) Conditional statement

DMC-40x0 Appendices ¢ 221

MBF=6,16,632+(MODULE*8) ,NUM Configure 1/0 using Modbus function code 16 where

OF10*2,A[] the starting register is 632+(MODULE*8), number
of registers is NUMOFIO*2 and A[] contains the
data.

EN end

#CFERR Label

MG”UNABLE TO ESTABLISH Message

CONNECTION™

EN End

Using the equation:

I/O number = (Handlenum*1000) + ((Module-1)*4) + (Bitnum-1)
MG @IN[6001] display level of input at handle 6, module 1, bit 2
SB 6006 set bit of output at handle 6, module 2, bit 3

or to one
0B 6006,1

AO 608,3.6 set analog output at handle 6, module 53, bit 1 to 3.6 volts
MG @AN[6017] display voltage value of analog input at handle6, module 5, bit 2

222 e Appendices DMC-40x0

DMC-40x0/DMC-2200 Comparison

BENEFIT

DMC-40x0

DMC-2200

Higher servo bandwidth

Up to 32kHz update rate

Up to 8kHz update rate

Faster Processing power

~10X faster than DMC-20x0

Increased Program Storage

2000lines x 80 Characters

1000 lines x 80 characters

Increased Array Storage

16000 array elements in 30 arrays

8000 array elements in 30 arrays

Increased Variable Storage

510 Variables

254 labels

Faster servo operation — good for very | 22 MHz encoder speed for servos 12 MHz
high resolution sensors
Faster stepper operation 6 MHz stepper rate 3 MHz

Improved EMI

Connections broken out through D-Sub
connectors and high power amps run
away from control lines.

100-pin high density connector
and cable.

Contour Buffer

511 elements

1 element

New commands/features

"L K, PW, %, OV, OT, OA, ALTX,
TR1,1,HV, LD, M axis, EY, ZA,
OE2, TM scaling, NO, LC1000,
MT1.5, #POSERR, #LIMSWI,
#MCTIME, and #ININT run without a

thread

Removed Commands

VT, WC

DMC-40x0

Appendices o 223

List of Other Publications

"Step by Step Design of Motion Control Systems'
by Dr. Jacob Tal

"Motion Control Applications"
by Dr. Jacob Tal
"Motion Control by Microprocessors"

by Dr. Jacob Tal

Training Seminars

Galil, a leader in motion control with over 500,000 controllers working worldwide, has a proud reputation for
anticipating and setting the trends in motion control. Galil understands your need to keep abreast with these trends
in order to remain resourceful and competitive. Through a series of seminars and workshops held over the past 20
years, Galil has actively shared their market insights in a no-nonsense way for a world of engineers on the move. In
fact, over 10,000 engineers have attended Galil seminars. The tradition continues with three different seminars,
each designed for your particular skill set-from beginner to the most advanced.

MOTION CONTROL MADE EASY
WHO SHOULD ATTEND
Those who need a basic introduction or refresher on how to successfully implement servo motion control systems.

TIME: 4 hours (8:30 am-12:30 pm)

ADVANCED MOTION CONTROL
WHO SHOULD ATTEND

Those who consider themselves a "servo specialist”" and require an in-depth knowledge of motion control systems to
ensure outstanding controller performance. Also, prior completion of “Motion Control Made Easy" or equivalent is
required. Analysis and design tools as well as several design examples will be provided.

TIME: 8 hours (8:00 am-5:00 pm)

PRODUCT WORKSHOP
WHO SHOULD ATTEND

Current users of Galil motion controllers. Conducted at Galil’s headquarters in Rocklin, CA, students will gain
detailed understanding about connecting systems elements, system tuning and motion programming. This is a
“hands-on” seminar and students can test their application on actual hardware and review it with Galil specialists.

Attendees must have a current application and recently purchased a Galil controller to attend this course.

TIME: Two days (8:30-4:30pm)

224 e Appendices DMC-40x0

Contacting Us

Galil Motion Control

270 Technology Way

Rocklin, CA 95765

Phone: 916-626-0101

Fax: 916-626-0102

E-Mail Address: support@galilmec.com
URL: http://galilmec.com/

FTP: http://galilme.com/ftp/

DMC-40x0 Appendices ¢ 225

WARRANTY

All controllers manufactured by Galil Motion Control are warranted against defects in materials and workmanship
for a period of 18 months after shipment. Motors, and Power supplies are warranted for 1 year. Extended warranties
are available.

In the event of any defects in materials or workmanship, Galil Motion Control will, at its sole option, repair or
replace the defective product covered by this warranty without charge. To obtain warranty service, the defective
product must be returned within 30 days of the expiration of the applicable warranty period to Galil Motion Control,
properly packaged and with transportation and insurance prepaid. We will reship at our expense only to destinations
in the United States and for products within warranty.

Call Galil to receive a Return Materials Authorization (RMA) number prior to returning product to Galil.

Any defect in materials or workmanship determined by Galil Motion Control to be attributable to customer
alteration, modification, negligence or misuse is not covered by this warranty.

EXCEPT AS SET FORTH ABOVE, GALIL MOTION CONTROL WILL MAKE NO WARRANTIES EITHER
EXPRESSED OR IMPLIED, WITH RESPECT TO SUCH PRODUCTS, AND SHALL NOT BE LIABLE OR
RESPONSIBLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

COPYRIGHT (3-97)

The software code contained in this Galil product is protected by copyright and must not be reproduced or
disassembled in any form without prior written consent of Galil Motion Control, Inc.

226 e Appendices DMC-40x0

Integrated Amplifiers and Drivers

Overview

Al — AMP-43040 (-D3040)

The AMP-43040 (four-axis) and AMP-43020 (two-axis) are multi-axis brush/brushless amplifiers that are capable of
handling 500 watts of continuous power per axis. The AMP-43040/43020 Brushless drive modules are connected to
a DMC-40x0. The standard amplifier accepts DC supply voltages from 18-80 VDC.

A2 — AMP-43140 (-D3140)

The AMP-43140 contains four linear drives for operating small brush-type servo motors. The AMP-43140 requires
a+ 12-30 DC Volt input. Output power is 20 W per amplifier or 60 W total. The gain of each transconductance
linear amplifier is 0.1 A/V at 1 A maximum current. The typical current loop bandwidth is 4 kHz.

A3 — SDM-44040 (-D4040)

The SDM-44040 is a stepper driver module capable of driving up to four bipolar two-phase stepper motors. The
current is selectable with options of 0.5, 0.75, 1.0, and 1.4 Amps/Phase. The step resolution is selectable with
options of full, half, 1/4 and 1/16.

A4 — SDM-44140 (-D4140)

The SDM-44140 microstepper module drives four bipolar two-phase stepper motors with 1/64 microstep resolution
(the SDM-44140 drives two). The current is selectable with options of 0.5, 1.0, 2.0, & 3.0 Amps per axis.

DMC-40x0 Integrated Amplifiers and Drivers e 227

Al - AMP-43040

Introduction

The AMP-43040 (four-axis) and AMP-43020 (two-axis) are multi-axis brush/brushless amplifiers that are capable of
handling 500 watts of continuous power per axis. The AMP-43040/43020 Brushless drive modules are connected to
a DMC-40x0. The standard amplifier accepts DC supply voltages from 18-80 VDC. If higher voltages are required,
please contact Galil.

Figure Al-1 - DMC-4040-C012-1000-D3040 (DMC-4040 with AMP-43040)

228 ¢ A1 — AMP-43040 DMC-40x0

Electrical Specifications

The amplifier is a brush/brushless trans-conductance PWM amplifier. The amplifier operates in torque mode, and

will output a motor current proportional to the command signal input.

Supply Voltage:
Continuous Current:
Peak Current

Nominal Amplifier Gain
Switching Frequency

Minimum Load Inductance:

Brushless Motor Commutation angle

Mating Connectors

18-80 VDC
7 Amps
10 Amps

0.7 Amps/Volt
60 kHz (up to 140 kHz available-contact Galil)

0.5 mH (Inverter mode) 0.2 mH (Chopper Mode)

120° (60° option available)

On Board Connector

Terminal Pins

POWER

6-pin MATE-N-LOK
MOLEX# 39-31-0060

MOLEX#44476-3112

A,B,C,D: 4-pin Motor
Power Connectors

4-pin MATE-N-LOK
MOLEX# 39-31-0040

MOLEX#44476-3112

For mating connectors see http://www.molex.com/

Powar

Connector Motor Connector

Power

Connector

Pin Number Connection

12,3

DC Power Supply Ground

45,6

+VS (DC Power)

Motor Connector

1

Phase C (N/C for Bushed Motors)

2 Phase B
3 No Connect
4 Phase A

DMC-40x0

Al — AMP-43040 e 229

Operation

Brushless Motor Setup
Note: If you purchased a Galil motor with the amplifier, it is ready for use. No additional setup is necessary.

To begin the setup of the brushless motor and amplifier, it is first necessary to have communications with the motion
controller. Refer to the user manual supplied with your controller for questions regarding controller
communications. It is also necessary to have the motor hardware connected and the amplifier powered to begin the
setup phase. After the encoders and motor leads are connected, the controller and amplifier need to be configured
correctly in software. Take all appropriate safety precautions. For example, set a small error limit (ER*=1000), a
low torque limit (TL*=3), and set off on Error to 1 for all axes (OE*=1). Review the command reference and
controller user manual for further details.

There are 3 settings for the amplifier gain: 0.4 A/V, 0.7 A/V, and 1.0 A/V corresponding to AG (amplifier gain) 0, 1
and 2. If the gain is set to 0.7 A/V, a torque limit of 3 (TLn=3) will allow the amplifier to output no more than 2.1
amps of current on the specified axis. The controller has been programmed to test whether the Hall commutation
order is correct. To test the commutation for the X axis, issue the BS command (BSX=n,m). The controller will
attempt to move the motor through one revolution. If the motor is unable to move, the controller will return
“unknown Hall transition”, check wiring, and execute BS again’. It may be necessary to issue more voltage to
create motion. The default for the BS command is BSn=0.25,1000 which will send 0.25 volts to the amplifier for 1
second. BSX=0.5,300 will issue 0.5 volts from the controller for 300 milliseconds. If the controller is able to move
the motor and the Hall transitions are not correct, the controller will alert the operator and recommend which motor
phases to change. For example, the controller might return “Wire A to Terminal B, Wire B to Terminal A.” If the
controller finds that the commutation order is correct, but the motor would run away due to positive feedback, the
controller will prompt the user to “Wire Phase B to C and C to B. Exchange Hall Sensors A and B...”. After
making any necessary changes to the motor phase wiring, confirm correct operation by reissuing the BS command.
Once the axis is wired correctly, the controller is ready to perform closed-loop motion.

Brushless Amplifier Software Setup

Select the amplifier gain that is appropriate for the motor. The amplifier gain command (AG) can be set to 0, 1, or 2
corresponding to 0.4, 0.7, and 1.0 A/V. In addition to the gain, peak and continuous torque limits can be set through
TK and TL respectively. The TK and TL values are entered in volts on an axis by axis basis. The peak limit will set
the maximum voltage that will be output from the controller to the amplifier. The continuous current will set what
the maximum average current is over a one second interval. The following figure captured with WSDK is indicative
of the operation of the continuous and peak operation. In this figure, the continuous limit was configured for 2 volts,
and the peak limit was configured for 10 volts.

Chopper Mode

The AMP-43040 can be put into what is called a “Chopper” mode. The chopper mode is in contrast to the normal
inverter mode in which the amplifier sends PWM power to the motor of +/-VS. In chopper mode, the amplifier
sends a 0 to +VS PWM to the motor when moving in the forward direction, and a 0 to —VS PWM to the motor when
moving in the negative direction.

This mode is useful when using low inductance motors because it reduces the losses due to switching voltages
across the motor windings. It is recommended to use chopper mode when using motors with 200-500uH
inductance.

230 ¢ A1 — AMP-43040 DMC-40x0

Estorage Scope Zoom

preote | Y0057 | Fupa | [Zoombut] | ose |

Figure A1-2 Peak Current Operation

With the AMP-43040 and 43020, the user is also given the ability to choose between normal and high current
bandwidth (AU). In addition, the user can calculate what the bandwidth of the current loop is for their specific
combination (AW). To select normal current loop gain for the X axis and high current loop gain for the Y axis,
issue AU 0,1. The command AW is used to calculate the bandwidth of the amplifier using the basic amplifier
parameters. To calculate the bandwidth for the X axis, issue AWX=v,l,n where v represents the DC voltage input to
the card, 1 represents the inductance of the motor in millihenries, and n represents 0 or 1 for the AU setting.

Note: For most applications, unless the motor has more than 5 mH of inductance with a 24V supply, or 10 mH of
inductance with a 48 volts supply, the normal current loop bandwidth option should be chosen. AW will return the
current loop bandwidth in Hertz.

Brush Amplifier Operation

The AMP-43040 and AMP-43020 also allow for brush operation. To configure an axis for brush-type operation,
connect the 2 motor leads to Phase A and Phase B connections for the axis. Connect the encoders, homes, and limits
as required. Set the controller into brush-axis operation by issuing BR n,n,n,n. By setting n=1, the controller will
operate in brushed mode on that axis. For example, BR0,1,0,0 sets the Y-axis as brush-type, all others as brushless.
If an axis is set to brush-type, the amplifier has no need for the Hall inputs. These inputs can subsequently be used
as general-use inputs, queried with the QH command. The gain settings for the amplifier are identical for the brush
and brushless operation. The gain settings can be set to 0.4, 0.7, or 1.0 A/V, represented by gain values of 0, 1, and
2 (e.g.. AG 0,0,2,1). The current loop gain AU can also be set to either 0 for normal, or 1 for high current loop gain.

Using External Amplifiers

Use connectors on top of controller to access necessary signals to run external amplifiers. In order to use the full
torque limit, make sure the AG setting for the axes using external amplifiers are set to 0 or 1. For more information
on connecting external amplifiers, see Connecting to External Amplifiers in Chapter 2.

Error Monitoring and Protection

The amplifier is protected against over-voltage, under-voltage, over-temperature, and over-current for brush and
brushless operation. The controller will also monitor for illegal Hall states (000 or 111 with 120° phasing). The
controller will monitor the error conditions and respond as programmed in the application. The errors are monitored

DMC-40x0 Al — AMP-43040 e 231

via the TA command. TA n may be used to monitor the errors with n =0, 1, 2, or 3. The command will return an
eight bit number representing specific conditions. TAO will return errors with regard to under voltage, over voltage,
over current, and over temperature. TA1 will return hall errors on the appropriate axes, TA2 will monitor if the
amplifier current exceeds the continuous setting, and TA3 will return if the ELO input has been triggered.

The user also has the option to include the special label #AMPERR in their program to handle soft or hard errors.
As long as a program is executing in thread zero, and the #AMPERR 1label is included, when an error is detected, the
program will jump to the label and execute the user defined routine. Note that the TA command is a monitoring
function only, and does not generate an error condition. The over voltage condition will not permanently shut down
the amplifier or trigger the #AMPERR routine. The amplifier will be momentarily disabled; when the condition
goes away, the amplifier will continue normal operation assuming it did not cause the position error to exceed the
error limit.

Hall Error Protection

During normal operation, the controller should not have any Hall errors. Hall errors can be caused by a faulty Hall-
effect sensor or a noisy environment. If at any time the Halls are in an invalid state, the appropriate bit of TA1 will
be set. The state of the Hall inputs can also be monitored through the QH command. Hall errors will cause the
amplifier to be disabled if OE 1 is set, and will cause the controller to enter the #AMPERR subroutine if it is
included in a running program.

Under-Voltage Protection

If the supply to the amplifier drops below 12 VDC, the amplifier will be disabled. The amplifier will return to
normal operation once the supply is raised above the 12V threshold; bit 3 of the error status (TAO0) will tell the user
whether the supply is in the acceptable range.

Note: If there is an #AMPERR routine and the controller is powered before the amplifier, then the #AMPERR
routine will automatically be triggered.

Over-Voltage Protection

If the voltage supply to the amplifier rises above 92 VDC, then the amplifier will automatically disable. The
amplifier will re-enable when the supply drops below 90 V. This error is monitored with bit 1 of the TAO command.

Over-Current Protection

The amplifier also has circuitry to protect against over-current. If the total current from a set of 2 axes (iec A and B
or C and D) exceeds 20 A, the amplifier will be disabled. The amplifier will not be re-enabled until there is no
longer an over-current draw and then either SH command has been sent or the controller is reset. Since the AMP-
43040 is a trans-conductance amplifier, the amplifier will never go into this mode during normal operation. The
amplifier will be shut down regardless of the setting of OE, or the presence of the #AMPERR routine. Bit 0 of TAO
will be set.

Note: If this fault occurs, it is indicative of a problem at the system level. An over-current fault is usually due to a
short across the motor leads or a short from a motor lead to ground.

Over-Temperature Protection

The controller is also equipped with over-temperature protection. If the average heat sink temperature rises over
100°C, then the amplifier will shut down. Bit 2 of TAO will be set. The amplifier will re-enable when the
temperature drops below 100 °C. This error will trigger the #AMPERR routine if included, and the user may decide
whether to disable the amplifier.

232 ¢ A1 — AMP-43040 DMC-40x0

ELO Input

If the ELO input on the controller is triggered, then the amplifier will be shut down at a hardware level, the motors
will be essentially in a Motor Off (MO) state. TA3 will return a 3 and the #AMPERR routine will run when the
ELO input is triggered. To recover from an ELO, an MO then SH must be issued, or the controller must be reset.

It is recommended that OE1 be used for all axes when the ELO is used in an application.

DMC-40x0 Al — AMP-43040 e 233

A2 - AMP-43140

Introduction

The AMP-43140 contains four linear drives for operating small brush-type servo motors. The AMP-43140 requires
a+ 12-30 DC Volt input. Output power is 20 W per amplifier or 60 W total. The gain of each transconductance
linear amplifier is 0.1 A/V at 1 A maximum current. The typical current loop bandwidth is 4 kHz.

The AMP-43140 can be ordered to have a 100mA maximum current output where the gain of the amplifier is
10mA/V. Order as (-D3140-100mA).

Figure A2-1 — DMC-4040-C012-1000-D3140 (DMC-4040 with AMP-43140)

234 o« A2 — AMP-43140 DMC-40x0

Electrical Specifications

The amplifier is a brush type trans-conductance linear amplifier. The amplifier operates in torque mode, and will
output a motor current proportional to the command signal input.

DC Supply Voltage: +/-12-30 VDC (bipolar)
Max Current (per axis) 1.0 Amps (100mA option)
Amplifier gain: 0.1 A/V (10mA/V option)
Power output (per channel): 20 W

Total max. power output: 60 W

Mating Connectors

Connector Terminal Pins
POWER 4-pin MATE-N-LOK
MOLEX# 39-01-2045 MOLEX#44476-3112

A,B,C,D: 4-pin Motor | 2-pin MATE-N-LOK
Power Connectors MOLEX# 39-01-2025 MOLEX#44476-3112

For mating connectors see http://www.molex.com/

(1]

Fower Connector Motor Connector

Power Connector

Pin Number Connection

1 +VS (DC Power)

2 -VS (-DC Power)
34 Power Supply Ground

Motor Connector
1 Motor Lead A
2 Motor Lead B

DMC-40x0 A2 — AMP-43140 e 235

Operation

Using External Amplifiers

Use connectors on top of controller to access necessary signals to run external amplifiers. For more information on
connecting external amplifiers, see Connecting to External Amplifiers in Chapter 2.

ELO Input

If the ELO input on the controller is triggered, then the amplifier will be shut down at a hardware level, the motors
will be essentially in a Motor Off (MO) state. TA3 will return a 3 and the #AMPERR routine will run when the
ELO input is triggered. To recover from an ELO, an MO then SH must be issued, or the controller must be reset.

It is recommended that OE1 be used for all axes when the ELO is used in an application.

236 « A2 — AMP-43140 DMC-40x0

A3 - SDM-44040

Introduction

The SDM-44040 is a stepper driver module capable of driving up to four bipolar two-phase stepper motors. The
current is selectable with options of 0.5, 0.75, 1.0, and 1.4 Amps/Phase. The step resolution is selectable with
options of full, half, 1/4 and 1/16.

Figure A3-1 - DMC-4040-C012-1000-D4040 (DMC-4040 with SDM-44040)

DMC-40x0 A3 — SDM-44040 e 237

Electrical Specifications

The amplifier is a brush type trans-conductance linear amplifier. The amplifier operates in torque mode, and will
output a motor current proportional to the command signal input.

DC Supply Voltage:
Max Current (per axis)
Maximum Step Frequency:

Motor Type:

Mating Connectors

12-30 VDC

1.4 Amps/Phase Amps (Selectable with AG command)
6 MHz

Bipolar 2 Phase

On Board Connector Terminal Pins
POWER 6-pin MATE-N-LOK
MOLEX# 39-31-0060 MOLEX#44476-3112

A,B,C,D: 4-pin Motor | 4-pin MATE-N-LOK
Power Connectors MOLEX# 39-31-0040 MOLEX#44476-3112

For mating connectors see http://www.molex.com/

Fower Connector Motor Connector

Power Connector

Pin Number Connection
1,2,3 DC Power Supply Ground
4,56 +VS (DC Power)

Motor Connector

1 B-
2 A-
3 B+
4 A+

238 ¢ A3 — SDM-44040

DMC-40x0

Operation

The AG command sets the current on each axis, the LC command configures each axis’s behavior when holding
position and the YA command sets the step driver resolution. These commands are detailed below, see also the

command reference for more information:

Current Level Setup (AG Command)

AG configures how much current the SDM-206x0 delivers to each motor. Four options are available: 0.5A, 0.75A,

1.0A, and 1.4 Amps

Drive Current Selection per Axis: AG n,n,n,n,n,n,n,n

n=0 05A
n=1 0.75 A (default)
n=2 10A
n=3 14A

Low Current Setting (LC Command)

LC configures each motor’s behavior when holding position (when RP is constant) and multiple configurations:

LC command set to 0 “Full Current Mode” - causes motor to use 100% of peak current (AG) while at a

“resting” state (profiler is not commanding motion). This is the default setting.

LC command set to 1 “Low Current Mode” - causes motor to use 25% of peak current while at a “resting”
state. This is the recommended configuration to minimize heat generation and power consumption.

LC command set to an integer between 2 and 32767 specifying the number of samples to wait between the
end of the move and when the amp enable line toggles

Percentage of full (AG) current used while holding position with LC n,n,n,n,n,n,n,n

n=0

100%

n=1

25%

The LC command must be entered after the motor type has been selected for stepper motor operation (i.e. MT-2,-2.-
2,-2). LC is axis-specific, thus LC1 will cause only the X-axis to operate in “Low Current” mode.

Step Drive Resolution Setting (YA command)
When using the SDM-44040, the step drive resolution can be set with the YA command

Step Drive Resolution per Axis: YA n,n,n,n,n,n,n,n

n=1 Full
n=2 Half
n=4 1/4

n=16 1/16

DMC-40x0

A3 — SDM-44040 e 239

ELO Input

If the ELO input on the controller is triggered, then the amplifier will be shut down at a hardware level, the motors
will be essentially in a Motor Off (MO) state. TA3 will return a 3 and the #AMPERR routine will run when the
ELO input is triggered. To recover from an ELO, an MO then SH must be issued, or the controller must be reset.

It is recommended that OE1 be used for all axes when the ELO is used in an application.

240 o A3 — SDM-44040 DMC-40x0

A4 — SDM-44140

Introduction

The SDM-44140 microstepper module drives four bipolar two-phase stepper motors with 1/64 microstep resolution.
The current is selectable with options of 0.5, 1.0, 2.0, & 3.0 Amps per axis.

Figure Al-1 - DMC-4040-C012-1000-D4140 (DMC-4040 with SDM-44140)

DMC-40x0 A4 — SDM-44140 e 241

Electrical Specifications

The amplifier is a brush type trans-conductance linear amplifier. The amplifier operates in torque mode, and will
output a motor current proportional to the command signal input.

DC Supply Voltage: 12-60 VDC

Max Current (per axis) 3.0 Amps (Selectable with AG command)
Max Step Frequency: 6 MHz

Motor Type: Bipolar 2 Phase

Switching Frequency: 60 kHz

Minimum Load Inductance: 0.5 mH

Mating Connectors

Connector Terminal Pins
POWER 6-pin MATE-N-LOK
MOLEX# 39-01-2065 MOLEX#44476-3112

A.B,C,D: 4-pin Motor | 4-pin MATE-N-LOK
Power Connectors MOLEX# 39-01-2045 MOLEX#44476-3112

For mating connectors see http://www.molex.com/

FPowar Connector Motor Connector

Power Connector

Pin Number Connection
1,2,3 +VS (DC Power)
4,5,6 DC Power Supply Ground

Motor Connector

1 A+
2 B+
3 A-
4 B-

242 o A4 — SDM-44140 DMC-40x0

Operation

The AG command sets the current on each axis and the LC command configures each axis’s behavior when holding
position. These commands are detailed below:

Current Level Setup (AG Command)

AG configures how much current the SDM-44140 delivers to each motor. Four options are available: 0.5A, 1.0A,
2.0A, and 3.0Amps (Note: when using the 3.0A setting, mounting the unit to a metal or heat dissipating surface is
recommended).

Drive Current Selection per Axis: AG n,n,n,n,n,n,n,n

n=0 05A

n=1 1 A (default)
n=2 2A

n=3 3.0A

Low Current Setting (LC Command)

LC configures each motor’s behavior when holding position (when RP is constant) and multiple configurations:

LC command set to 0 “Full Current Mode” - causes motor to use 100% of peak current (AG) while at a
“resting” state (profiler is not commanding motion). This is the default setting.

LC command set to 1 “Low Current Mode” - causes motor to use 25% of peak current while at a “resting”
state. This is the recommended configuration to minimize heat generation and power consumption.

LC command set to an integer between 2 and 32767 specifying the number of samples to wait between the
end of the move and when the amp enable line toggles

Percentage of full (AG) current used while holding position with LC n,n,n,n,n,n,n,n
n=0 100%
n=1 25%

The LC command must be entered after the motor type has been selected for stepper motor operation (i.e. MT-2,-2.-
2,-2). LC is axis-specific, thus LC1 will cause only the X-axis to operate in “Low Current” mode.

ELO Input

If the ELO input on the controller is triggered, then the amplifier will be shut down at a hardware level, the motors
will be essentially in a Motor Off (MO) state. TA3 will return a 3 and the #AMPERR routine will run when the
ELO input is triggered. To recover from an ELO, an MO then SH must be issued, or the controller must be reset.

It is recommended that OE1 be used for all axes when the ELO is used in an application.

DMC-40x0 A4 — SDM-44140 e 243

Index

AN 1) SUUUR 1, 84, 90, 166, 168, 186, 201-2 Clear Sequence.........ocvevveeveeveseereesieennens 84, 86, 90, 92
Off-On-EIT0r.......oooovieeiiceeeeeeeee 33, 166, 168 ClOCK ittt 143
Stop MoOtionccceveeeveieieeenne, 84,90, 136, 169 CMDERR.........coiiioieiieieeieeeeeeeeeeeeenen, 124, 135, 137

Absolute Position...................... 27,76-77, 128-29, 132 Codel35, 142, 139-46, 159-60, 162-64

Absolute Valueccccooovevvvvieeiiiinnnn, 98,132, 141, 167 Command Summarycceeeveene 76, 78, 86, 92, 145

Acceleration....................... 2,24,130, 147, 153, 219-20 Commanded Position .. 77-78, 94-96, 137, 145, 172-74

AdAIesS ..o 144-45 Compensation

Amplifier Enableccccoceeeviviiiiiniiennn, 7,18, 41, 166 Backlash........ccooeveeevoieiieieeeen. 75, 113-14, 163

Amplifier Gain...........ccceevennenne. 3,5,20,176, 180, 182 Conditional jJumpcceceeeeeeieeeenee. 34,127, 130-32

Analog Input.....1, 5, 32, 39, 79, 141-42, 143, 156, 163, Configuration

186, 221 JUMPET .. 171

Analysis Contour Modeccoevivininieieieeee 74-75, 102-6
SDK ..o 122 Control Filter
WSDK et 16, 20 Damping......c.ccceeevvevvieieeieieeieere e 175

Arithmetic Functionscccoooiiiiieeiinn, 131, 139 GaAIN ..o 142

Arm Latch. ..o 120 INterator....ccccveeeiieeiieeiee e 175

Array...... 1,4, 15,75, 88, 104-6, 126, 131, 139-52, 188 Proportional Gain...........ccoecvevvvecieecieneenieeieeneee 175

Automatic SUbTOUtINE...........coovvuviiiiieiieiiiieeens 124, 135 Coordinated Motionccceeeeeveeeeevneeeennnenn. 74, 89-92
CMDERRcooovvieiieiieeeee e 124, 135, 137 Circular........coooeeeeeeeeeneeeneene, 89-92, 94, 145, 160
ININT Lo 155,156 Contour Modeccocvvveeeveeeecnieeenne.. 74-75, 102—6
LIMSWI....ooovieiiiiien, 32,124, 134-35, 167-69 ECAM ..o 98, 101
MCTIME ..., 124, 128, 135, 136 Electronic Cam..........ccooovvuvvveeeiiieinnns 74-75,97, 99
POSERRccvvvviviiiiiiiencen, 124, 134-36, 16768 Electronic Gearingccceceevveenueenen. 74-75,93-97
TCPERR ...ttt 139 GeATING.....eeieeeeeeeeeeeee e 74-75, 93-97

Auxiliary Encoder.............. 96, 107-14, 107-14, 107-14 Linear Interpolation......... 30, 74, 79-86, 88, 94, 102
Dual Encoder.......ccooveveveveeeecnieiceieeceeenne 114, 145 COSINE .. 75, 13941, 144

Backlashccoooveviiiiiiee 75,113-14, 163 Cycle Time

Backlash Compensation CLOCK -ttt 143
Dual Loop............ 75,107-14,107-14, 107-14, 163 DAC175,178-80, 182

Baud Ratecccooeiiiiiiiieee 16, 49 DampPing.......cccveeveeiiiieiieiiee e 175

Begin Motion............. 21, 24, 129-30, 136, 142, 13946 Data Capturec.eevveeeeeeriieriieiieenieesiee e 144-45

Binarycocoeeveeeenieiieieeieceeeee e, 1,52,68,71, 157 Data Recordooovvivvieiiiiiiiiiiiiiieeceeeeee 53, 58,59

Bit-WiS€...cuiiieieiisieieeeeee e 139, 149 DeEbUZEZING......eeieeieieieieeie ettt 126

Burn 23, 48 Decelerationcccveeeeeieeeeeeee e 147
EEPROM.....coooiviiieieiieeieeee e 1,4, 158,198 Digital Filter.........coovvieieiieieeeee 179-80, 182-84

Bypassing Optoisolation...........ccoceveveverenereeeenenne. 37 Digital INput....c..ccccoerinenininieicieicieneneneeens 34, 141

Capture Data Digital Outputcoceeviiiiieiiiee e 141
Record........coveevveevecrieiecienen. 75,103, 105, 143, 145 Dip Switch

CIICle oo 160-61 AdAIeSS....cvveeeeeeeceeee e 144-45

Circular Interpolation 30, 89-92, 94, 145, 160 DOWNIOAdceviiiiiiieiee e 144

Clear Bit.......ooveeeeeieeeeeee e 154,201 Dual ENCOAErccovvviiiiiiieeeieieeeeeeeee e 114, 145

244 e Index DMC-40x0

Backlash.........cccccooevvveiiiviieiieeens 75,113-14, 163

Frequency......ccccceviviviiiniinnicnnnne. 24,116, 181-83, 186

Dual Loop............ 75, 107-14, 10714, 107-14, 163 Function . 84, 104, 114-15, 119, 130, 131, 135, 139-44,
Dual Loop....c.ccoevvneee 75, 107-14, 107-14, 107-14, 163 161, 163-64
Backlash..........ccccooevviiiiiieeiiiieeen, 75,113-14, 163 Arthmeticoviveiiiiiieceeee e, 122,153
Ecamccooovveiiiiiie e, 98, 101 Functions
Electronic Camccccooeevveeeeeeeeennnen. 74-75, 97, 99 Arthmetic c...vvviiiiiiiieiiieeee e, 131, 139
Echo49, 59 Gain 3, 5, 20, 25, 28, 142
Edit Mode.......ooovvveiiiieeeceeeee 28,135 Proportional...........ccocevoieiiiienineeeeeee 175
EditOr ...ovieiieieieieiee ettt 28 Gear Ratio.....ooeeeieeieieieescecceeee 93-96
EEPROM.......coevviiieiieieieieieieie 1,4, 15,158, 198 GRAMING.....cvveeereeeeeciieieere e e e eeees 1, 74-75, 93-97
Electronic Camccccoovvvveuivveeerieeeeennns 74-75, 97,99 Halt 85, 130-31
Electronic Gearing...........ccecceeverevennenne 1, 74-75, 93-97 ADOTt .. 84,90, 166, 168, 2012
Ellipse Scalecoceeieiieiieeec e 92 Off-On-Error........ooovvvvveeiiieeiieeeeee 33,166, 168
Enable Stop Motion.........cecvevveievierierieeenne. 84,90, 136, 169
Amplifer Enable.........ccooooiiiiiiiiiiiiiee 166 Hardware........cocceceeeienenininincieeeccneese e 32
Amplifier Enableccocoeoiiiiiiiiiies 7, 18,41 AdAress......veeeieeiiieie e 14445
Encoder Amplifier Enable...........coocoooiiiniiniiiiee 166
Auxiliary Encoderl, 5, 20, 24, 37, 96, 107-14, 107— /0154
14, 107-14, 155, 187, 202 JUMPCT ..t 171
Differential..................... 7,19,21, 37,155,186, 187 TTL oo 166
Dual Encoder.......ooooveeeeeeeeeeeeeeeeeeeeennn. 73, 114, 145 Hardware Handshakeccccooeeeeiiiiiiecneene 49, 59
INdex PulSeooovviieiiiiieiieeeie e 19, 33 Home Inputcooveiiniiiiiiiiiiiciiceecne 33, 143, 186
Quadrature 4,7,113,153,159, 167,178, 186 Home INputs........oovveeviiiiiiiiiiccic e 116
Error Code .52, 72,73, 135, 142, 13946, 159-60, 162— HOMING ..o 33
64 Find EAge ...ocvveiiieieeeeeeeeee e 33
Error Handling.................... ii, 32, 124, 134-35, 167-69 I/0
Error Limit..................... 19, 20, 25, 39, 41, 135, 166-68 Amplifier Enable............c.coeven.n.. 7, 18,20, 41, 166
Off-On-Error........ccoceeevvveveeennnne 19, 33, 41, 166, 168 Analog INPutoceeeieiieiieeeeeee e 79
Example Digital Inputcccoeveevevieiieiee 1, 34, 141, 155
Communication Interrupt...........cccecveeenee 138, 148 Digital Outputcccoevveiveieeeieeeee 1, 141, 154
Design Example.......ccccoooieiiiiiiinieiieeeeeeeee, 25 Home Input ..o 33,143,186
Ethernet Communication Error.............cccv....... 139 Limit SWitch......ccoveveiiiiiieiieieee e 202
Input INterrupt......cccveeeeeeciieiiieeieeceeee e 156 TTL e 166
OPLO 22 oottt 221 Independent Motion
OUPUL Bit .uveeiieiiciecieeeeceeeee e 154 Jog78-79, 93, 101, 120, 129-30, 136-37, 142, 163,
OULPUL POTT ..o 154 168
POSition FOLOWETeeeeeeeeeeeeeeeeeee e 156 INdeX PUISE.....ovveiieieieeeeeeeeee e, 19, 33
Printing a Variable..........ccoocevieiiieiecieieieennn. 151 ININT ..ot 124, 135-36, 155, 156
Set Bit and Clear Bit.......ocveveeeeeeeeeeeeeeeeeeenne. 154 Input
Sinusoidal Commutation.............ccccccvevveennnnen. 18,22 ANAIOZ ... 79
Start Motion on SWitCh...........ccoevvevvieeveieeinnennen. 155 Input Interrupt..........coccee. 124, 130, 135-36, 155, 156
Turn on output after MoOVeccceevveveveieienne. 154 ININT ...oooiieee e 124, 135-36
USING INPULS....covrviieeieiiieiieieieceieeeeeee e 155 Input of Datacccoovieiiiiii e 146
WITE CULEET et 159 Inputs
Feedrateccoovvvvvevrieiieienenn, 86,90, 92, 130, 160-61 ANALOZ....oeieiiieeeee e 141-42, 143, 163
FIFO oo 59, 126 INStAllation........eevveevierieieere et 170
Filter Parameter INtEGIator.....cccvievieeieeeeeeteeeee e 25,175
DAMPINGoovoeeveveeeeeeeeeeeeeee e 25,175 Internal Variablec.ccccevenenennnen. 30, 132, 141, 142
GaIN ..o 25,28, 142 Interrogation............ 25, 26, 28, 72,73, 87,93, 151, 152
INtEIALOT ...t 25,175 Interruptcoovevienieniiiceen 130, 134-36
PID .o 2,21,24,25,175, 184 INVETt..eeiiieieee et 21,113
Proportionalcecvevierieneninerecieeeeeeeenn 25 Jog 1,78-79,93,101, 120, 129-30, 136-37, 142, 148,
Proportional Gain..........ccccceevevverierresieieierenennn 175 163, 168
Stability.........cccene.e. 113-14, 163, 170-71, 175, 181 JOYSHCK v 79, 142, 16263
Find EA@e.......coveiiieieeeeeeeee e 33 JUMPET ..t 14,15, 171, 198
Formattingcccooeveveveeinieieieieiene 150, 152, 153 Keyword.......coooevieieiiiieeee 131, 139, 141, 143-44
DMC-40x0 Index e 245

TIME ..o 143-44 Output
Label.....24, 79-85, 89, 99-101, 106, 114, 120, 128-36, Amplifier Enable............cccceevevenennnn. 7,18, 41, 166
142-43, 147, 161, 163-64, 168 Digital OutpuLeevveeieieieieeeeeeeeeeeeiee e 1,154
LIMSWI. ..ot 167-69 EIr0r OULPUL ..ot 39
POSERR ..ottt 167-68 Motor Command................... 2,18,21,22, 180, 201
Special Labelcccccceoenennininenceicnenn. 124, 169 Step and Direction..........cccooeierenenenenieeieene 2
LatCh..ooooveiieieceee e 5,73,119 PID 175, 184
Arm Latch.....cccooinininiiiiice 120 Play Backcouooeeiiiiieeee e 75, 146
Data Capturecceceeeeeeeeieieeeeeseeeeeene 144-45 POSERRccovveveeveeriereereeneennn 124, 134-36, 16768
Position Capture.........cceeeeereeeeeeieieeseee e 119 Position Error 124, 135-36, 142, 145, 163
Record....coovvviveiiiiiiieeee. 75,103, 105, 143, 145 PoSItion Capture.......ccovevveeveeeenieeiereereeeeesreeveeeneas 119
TEACK ..o 105 Latch oo 119
Limit SWitchcoovveeiieiieieeiecreeeenee, 135, 143, 167-69 TeaCh..uvieiiieeee e 105
LIMSWI ..o 32, 124, 134-35, 167-69 Position Error114, 124, 135-36, 142, 145, 163, 16668,
Linear Interpolation............... 30, 74, 79-86, 88, 94, 102 174
Clear Sequencecccvevveeeeevenreenenns 84, 86, 90, 92 POSERR.......coooiiieiiee 124, 134-36
Logical Operator..........cccecvevevieneenieeieseeeenes 131, 147 PoSTtion Limit.......cccveeciieiiiieniieiieeeie e e eiee e 168
Masking Program Flow.......ccccoooiiininiiiicee, 123,127, 155
Bit-WiS€....ooovieiieiieeiiieeeeeeee e 139, 149 Interrupt............. 1, 130, 134-36, 138, 148, 155, 156
Math Function StaCK. oo 134, 137, 138, 156
Absolute Valuec.ccceeeuvvennnnne. 98,132, 141, 167 Programmable...........cccoovevvievennrennnne, 141-43, 163, 167
Bit-WISE....eeovieiiieeeee et 139 EEPROMooooiiiiiiieeceeeeeeeeeeeeeee e 4
COSING ... 75,139-41, 144 Programming........c.ccceceeveeneenerniinieneencenneenn 24,68, 74
Logical Operator..........ccoveerereeenieeneneenennenens 131 Haltu oo 85, 130-31
SINE .o 75,99, 141 Proportional Gain...........cccceeevveveeienienieereeienen, 25,175
Mathematical EXpressioncccoeeeevveveennenns 139, 141 Protection
MCTIMEcoooeviiiieieeeeeeeeeeeein, 124,128, 135, 136 Error Limit 19, 20, 25, 39, 41, 135, 166-68
Memory 1,2,21, 23,28, 51, 68,105, 122, 126, 131, Torque Limitccccoeevevievieniieieieiereienn 20, 21,27
135, 143, 144, 158 PWM ..ot 5,201
Array.......... 4,75, 88, 104-6, 126, 131, 139-52, 188 Quadrature................. 4,7,113,153,159, 167,178, 186
Download.........ccoeeevvieiiieeiieiieeee e 144 Quit
UPLoAd ... 122 AbOrt ..cvvieviee 1, 84,90, 166, 168, 186, 201-2
Message 49, 53, 59, 89, 126, 135-36, 140, 139-50, 149, Stop Motion.......ccceeeeereeierienieeeenne. 84,90, 136, 169
150, 168-69 Record.......coovvevvveeiiieiiceiccee 75,103, 105, 143, 145
Modellingccccoveenienieeneseeeeee, 172, 175-76, 180 LatCh cooveeeieieeeeeeeeee e 5,73,119
Motion Complete Position Capture..........coeeeeeeeieienieneseeseeeeeenes 119
MCTIMEccooooiieeeieeee, 124, 128, 135, 136 TeaChvieiiicee e 105
Motion SMOoothing..........cceceveeieeenieieenne. 75,114,116 REGIStEr ..eviiieiieiice e 16,17, 142
S-CUIVE ..eviiieeeeeeeeeeee e 85,115 Reset... 2, 15, 20, 23, 32, 39, 52, 59, 131, 166, 168, 198,
Motor Commandcc......... 2,18, 21,22, 180, 201 202
Moving Scaling
Acceleration..........cccceeeeeeeeeennnnnn. 130, 147, 219-20 Ellipse Scale......ccocoveveeieiiecienieeeee e 92
Begin Motion................... 129-30, 136, 142, 139-46 SeCUIVE e 85,115
Circular.........cooeveeeeeeeeeecneeene. 89-92,94, 145, 160 Motion Smoothingccccceevereenenne. 75,114,116
Home INputsccooeveeieieiieeeeceeee e 116 SDK 122
Multitasking..........cceeeveieeierierieneese e 125 Selecting Address.........cocevererereeenieieieseee 144-45
Halt oo 85, 130-31 Serial Port...... 16, 17, 138, 139, 148, 150, 199, 200, 201
OE Servo Design Kit
Off-On-EIT0roiiiiiecieeeeeeeeeeeeeee e, 166, 168 SDK ..o 122
Off-On-Error.......ccoooovvveeeeeceeeeeen, 19, 33, 41, 166, 168 St Bt coveiiiiieieeeiee e 154, 201
Operand Sine 75,99, 141
Internal Variablecccoooenneee.. 30, 132, 141, 142 Single-Ended.......cccooevvieiienieieeeieeee 7,19, 21, 186
Operators Slew 24, 26, 76, 96, 128, 130, 159
Bit-WiSE....eiooiiiiiieeieeereeeee e 139 Smoothing................... 1,24, 75, 85, 86,90, 92, 114-16
Optoisolation Software
Home Input.......ccovvvveviiiniiiiiiiieieeeeeee, 33,143 SDK .ttt 122
246 e Index DMC-40x0

Terminal....................... 15,16, 17, 20, 28, 29, 50, 68 Modellingccooeeeeereeieieiene 172, 175-76, 180
WSDK .o 16, 20 PID ..o 2,21,24,25,175, 184
Special Labelcccoevveeieriieiieieciecieeeeee, 124, 169 Stabilityccvenneene 113-14, 163, 170-71, 175, 181
Specificationcceecveeierienieeie e 85-86, 90 Time
Stability ...c.ccoveveveerennnee 113-14, 163, 170-71, 175, 181 ClOCK .. 143
StACK ...vveiceeeeee e 134,137,138, 156 TIME... .ot 14344
Zer0 StacK.......cooveeeieeieeieeeeeeeee e 137, 156 Time Interval........c..ccoovvvvevveieeieneneennen. 102-3, 105, 145
72110 TP 145 TIMEOULcvievecereceeereeere e 16, 124, 128, 135, 136
INterrogationccoeeeeeenieneeneneee e 87,93 MCTIME........coeiiieieeeeeee 124, 128, 135, 136
StOp Code ..o 145 Torque Limit.....cocoevenineeiiinicinincncnceceneee 20, 21,27
Step MOtOr ...c.eeeeieeieieeeeeee e 2,3,5,14,24,116 TTIZEET wovveeveerenrereieieeene 122, 127, 129-30, 174, 201
KS, Smoothing........... 24,75, 85, 86,90, 92, 114-16 Trippoint 29,76, 85-86,91-92, 128-29, 134
Stepper Position Maintenance 2,24,109 TroubleShOOtcooveieiiiieeceeee e 170
Stop TTL 5, 32, 37, 39, 41, 166, 186, 201
ADOTt...eviiiiiiieeeee e, 84,90, 166, 168, 201-2 TUNING . 1,13,21,25
Stop Code ..73, 135, 142, 13946, 145, 159-60, 162—64 SDK ..o 122
Stop MOtIONoveeneieieeiece e 84,90, 136, 169 Stabilityc....... 113-14, 163, 170-71, 175, 181
Subroutine..32, 89, 122, 124, 131-36, 148, 155, 167—68 WSDK ..o 16,20
Automatic Subroutine.............cc.ccceeuveeeenne... 124, 135 UPLoad.....cccveeeieiecieceetee e 29,122
Synchronization...........ccccceceveeniencenennennn. 1,7,48,97 USEr Unit....oooooeiiiiiiieeeeee e 153
SYNEAX 1ttt 68, 69 Variable................... 15,29, 73, 122, 149, 150, 151, 153
Tangent......cccoovvevveiinieenieeeeeeeeeeene 75, 89, 91-92 Internalccoooeeviieiiieiicieeeeeee 132,141, 142
TEACKH .. 105 Internal Variable...........c.coovvoviieviiiiieeieceeeee 30
Data Capture........ccceeeevveereeniienieeeie e, 144-45 Vector Acceleration 30, 86-87, 92, 161
LatCh.oveiiiiieeeee e, 5,73,119 Vector Decelerationcoeeevvvveeeeeeennes 30, 8687, 92
Play-BacK........ccocevieniieiinieeieeeeee e 75, 146 Vector Mode
Position Capture..........ccecveecveevereenieenieseeseeeeenns 119 L3 1 (o] [T RUS 160-61
Record.....coovvvvveeeiiicieeecn. 75, 103, 105, 143, 145 Circular Interpolation.......... 30, 89-92, 94, 145, 160
Tell Error Clear Sequence.........ccocvevveeveeeeereennenns 84, 86, 90, 92
Position Error................. 124, 135-36, 142, 145, 163 Ellipse Scale......covevvieiieieniieiiereeeeceeie e 92
Tell Error Code........coovvvveeeeeieeeeeeeeeeeeeeeeeeeene 72,73 Feedrate.........coovvvvenvninnnnn. 86,90, 92, 130, 160-61
Tell POSItION.cccouiviieeieeeeeeeeeeee e 26,59, 73, 152 Linear Interpolation...........cccceeveevvecienieneenieenennen. 30
Tell TOIQUEveeeeieeeeeeeeeiieeeee et 21,73 Tangent.......coocveevveeveeniieenieeeiee e 75, 89, 91-92
Terminal 15,16, 17, 20, 28, 29, 32, 50, 68, 122, 142 Vector Speed......covvvevveeieenrnnnne. 30, 84-90, 92, 130, 161
TREOTY .. 25,172 WIE CULET ...ttt 159
Dampingcccceceveveeeeienieieneneeeeeeeeenen 25,175 WSDK ..ot 16, 20
Digital Filtercccoeevvvveenrenen. 68, 17980, 18284 ZET0 StACK ...oeiieiieiieeeeee e 137,156
DMC-40x0 Index e 247

	Contents
	Chapter 1 Overview
	Introduction
	 Overview of Motor Types
	Standard Servo Motor with +/- 10 Volt Command Signal
	Brushless Servo Motor with Sinusoidal Commutation
	Stepper Motor with Step and Direction Signals

	Overview of External Amplifiers
	Amplifiers in Current Mode
	Amplifiers in Velocity Mode
	Stepper Motor Amplifiers

	Overview of Galil Amplifiers and Drivers
	A1 – AMP-43040 (-D30x0)
	A2 – AMP-43140 (-D3140)
	A3 – SDM-44040 (-D4040)
	A4 – SDM-44140 (-D4140)

	 DMC-40x0 Functional Elements
	Microcomputer Section
	Motor Interface
	Communication
	General I/O
	System Elements
	Motor
	Amplifier (Driver)
	Encoder
	Watch Dog Timer

	 Chapter 2 Getting Started
	DMC-4040 Layout
	DMC-4080 Layout
	DMC-40x0 Power Connections
	 DMC-4040 Dimensions
	 DMC-4080 Dimensions
	 Elements You Need
	 Installing the DMC-40x0
	Step 1. Determine Overall Motor Configuration
	Standard Servo Motor Operation:
	Sinusoidal Commutation:
	Stepper Motor Operation

	Step 2. Install Jumpers on the DMC-40x0
	Master Reset and Upgrade Jumpers
	 Motor Off Jumpers
	Communications Jumpers for DMC-40x0

	Step 3. Install the Communications Software
	Using Windows XP (32 & 64 bit):

	Step 4. Connect 18-80VDC Power to the Controller
	Step 5. Establish Communications with Galil Software
	Communicating through the Main Serial Communications Port
	Using Galil Software for Windows
	Using Non-Galil Communication Software

	Communicating through the Ethernet
	Using Galil Software for Windows

	Sending Test Commands to the Terminal:

	Step 6. Determine the Axes to be Used for Sinusoidal Commutation
	Notes on Configuring Sinusoidal Commutation:
	Example: Sinusoidal Commutation Configuration using a DMC-4070

	Step 7. Make Connections to Amplifier and Encoder.
	Connecting to External Amplifiers

	Step 8a. Connect Standard Servo Motors
	Inverting the Loop Polarity

	Step 8b. Connect Sinusoidal Commutation Motors
	Example: Sinusoidal Commutation Configuration using a DMC-4070

	Step 8c. Connect Step Motors
	Step 9. Tune the Servo System

	Design Examples
	Example 1 - System Set-up
	Example 2 - Profiled Move
	Example 3 - Multiple Axes
	Example 4 - Independent Moves
	Example 5 - Position Interrogation
	Example 6 - Absolute Position
	Example 7 - Velocity Control
	Example 8 - Operation Under Torque Limit
	Example 9 - Interrogation
	Example 10 - Operation in the Buffer Mode
	Example 11 - Using the On-Board Editor
	Example 12 - Motion Programs with Loops
	Example 13 - Motion Programs with Trippoints
	Example 14 - Control Variables
	Example 15 - Linear Interpolation
	Example 16 - Circular Interpolation

	 Chapter 3 Connecting Hardware
	Overview
	Using Optoisolated Inputs
	Limit Switch Input
	Home Switch Input
	Abort Input
	ELO (Electronic Lock-Out) Input
	Reset Input
	Uncommitted Digital Inputs

	Wiring the Optoisolated Inputs
	Electrical Specifications
	Bi-Directional Capability
	Using an Isolated Power Supply
	Bypassing the Opto-Isolation:

	TTL Inputs
	The Auxiliary Encoder Inputs

	High Power Opto-Isolated Outputs
	Electrical Specifications
	Wiring the Opto-Isolated Outputs

	 Analog Inputs
	AQ settings

	 TTL Outputs
	Output Compare
	Error Output

	 Extended I/O of the DMC-40x0 Controller
	Electrical Specifications (3.3V – Standard)
	Inputs
	Outputs

	Electrical Specifications (5V – Option)
	Inputs
	Outputs

	 Amplifier Interface
	Electrical Specifications
	Overview
	ICM-42000 and ICM-42100 Amplifier Enable Circuit
	 ICM-42200 Amplifier Enable Circuit

	Chapter 4 Software Tools and Communication
	Introduction
	RS232 Ports
	RS232 Main Port {P1} DATATERM
	RS232 Auxiliary Port {P2} DATASET
	RS-232 Configuration
	Baud Rate Selection
	Handshaking

	Ethernet Configuration
	Communication Protocols
	Addressing
	Connecting using the BOOT-P utility
	Assigning an address via the RS232 port

	Communicating with Multiple Devices
	Multicasting
	Using Third Party Software

	Data Record
	 Explanation Data Record Bit Fields
	Notes Regarding Velocity and Torque Information
	QZ Command

	Controller Response to Commands
	Unsolicited Messages Generated by Controller
	Galil SmartTERM
	DMC Program Editor Window
	DMC Data Record Display

	Windows Servo Design Kit (WSDK)
	Creating Custom Software Interfaces
	ActiveX Toolkit
	DMCWin Programmers Toolkit
	Galil Communications API with C/C++
	Galil Communications API with Visual Basic
	Declare Functions
	Sending Commands in VB

	DOS, Linux, and QNX tools
	DOS
	Linux
	QNX

	Chapter 5 Command Basics
	Introduction
	Command Syntax - ASCII
	Coordinated Motion with more than 1 axis

	 Command Syntax – Binary (advanced)
	Binary Command Format
	Header Format:
	Data fields Format
	Example

	Binary command table

	Controller Response to DATA
	Interrogating the Controller
	Interrogation Commands
	Summary of Interrogation Commands
	Interrogating Current Commanded Values.
	Operands
	Command Summary

	 Chapter 6 Programming Motion
	Overview
	Independent Axis Positioning
	Command Summary - Independent Axis
	Operand Summary - Independent Axis
	Example - Absolute Position Movement
	Example - Multiple Move Sequence

	Independent Jogging
	Command Summary - Jogging
	Operand Summary - Independent Axis
	Example - Jog in X only
	Example - Joystick Jogging

	Position Tracking
	Example - Motion 2:
	Example Motion 4
	Trip Points
	 Command Summary – Position Tracking Mode

	Linear Interpolation Mode
	Specifying Linear Segments
	Additional Commands
	An Example of Linear Interpolation Motion:
	Specifying Vector Speed for Each Segment
	Changing Feed Rate:

	Command Summary - Linear Interpolation
	Operand Summary - Linear Interpolation
	Example - Linear Move
	Example - Multiple Moves

	Vector Mode: Linear and Circular Interpolation Motion
	Specifying the Coordinate Plane
	Specifying Vector Segments
	Additional commands
	Specifying Vector Speed for Each Segment:
	Changing Feed Rate:
	Compensating for Differences in Encoder Resolution:
	Trippoints:
	Tangent Motion:
	Example:

	Command Summary - Coordinated Motion Sequence
	Operand Summary - Coordinated Motion Sequence
	Example:

	Electronic Gearing
	Ramped Gearing
	Example – Electronic Gearing Over a Specified Interval
	Command Summary - Electronic Gearing
	Example - Simple Master Slave
	Example - Electronic Gearing
	Example - Gantry Mode
	Example - Synchronize two conveyor belts with trapezoidal velocity correction

	Electronic Cam
	Step 1. Selecting the master axis
	Step 2. Specify the master cycle and the change in the slave axis (or axes).
	Step 3. Specify the master interval and starting point.
	Step 4. Specify the slave positions.
	Step 5. Enable the ECAM
	Step 6. Engage the slave motion
	Step 7. Disengage the slave motion

	Command Summary - Electronic CAM
	Operand Summary - Electronic CAM
	Example - Electronic CAM

	Contour Mode
	Specifying Contour Segments
	Additional Commands
	Command Summary - Contour Mode
	General Velocity Profiles
	Generating an Array - An Example
	Contour Mode Example
	Teach (Record and Play-Back)
	Record and Playback Example:
	Virtual Axis
	ECAM Master Example
	Sinusoidal Motion Example

	Stepper Motor Operation
	Specifying Stepper Motor Operation
	Stepper Motor Smoothing
	Monitoring Generated Pulses vs. Commanded Pulses
	Motion Complete Trippoint

	Using an Encoder with Stepper Motors
	Command Summary - Stepper Motor Operation
	Operand Summary - Stepper Motor Operation

	Stepper Position Maintenance Mode (SPM)
	Internal Controller Commands (user can query):
	User Configurable Commands (user can query & change):
	Error Limit
	Correction
	Example: SPM Mode Setup
	Example: Error Correction
	Example: Friction Correction

	Dual Loop (Auxiliary Encoder)
	Using the CE Command
	Additional Commands for the Auxiliary Encoder

	Backlash Compensation
	Continuous Dual Loop - Example
	Sampled Dual Loop - Example

	Motion Smoothing
	Using the IT Command:
	Example - Smoothing

	Using the KS Command (Step Motor Smoothing):

	Homing
	Stage 1:
	Stage 2:
	Stage 3:
	Example: Homing
	 Example: Find Edge

	Command Summary - Homing Operation
	Operand Summary - Homing Operation

	High Speed Position Capture (The Latch Function)
	 Fast Update Rate Mode

	Chapter 7 Application Programming
	Overview
	Using the DMC-40x0 Editor to Enter Programs
	Edit Mode Commands

	Program Format
	Using Labels in Programs
	Special Labels
	Commenting Programs
	Using the command, NO or Apostrophe (‘)

	Executing Programs - Multitasking
	Debugging Programs
	Trace Commands
	Error Code Command
	Stop Code Command
	RAM Memory Interrogation Commands
	Operands
	Debugging Example:

	Program Flow Commands
	Event Triggers & Trippoints
	DMC-40x0 Event Triggers

	Event Trigger Examples:
	Event Trigger - Multiple Move Sequence
	Event Trigger - Set Output after Distance
	Event Trigger - Repetitive Position Trigger
	 Event Trigger - Start Motion on Input
	Event Trigger - Set output when At speed
	Event Trigger - Change Speed along Vector Path
	Event Trigger - Multiple Move with Wait
	Define Output Waveform Using AT

	Conditional Jumps
	Command Format - JP and JS
	Logical operators:
	Conditional Statements
	Multiple Conditional Statements
	Using the JP Command:
	Example Using JP command:

	Using If, Else, and Endif Commands
	Using the IF and ENDIF Commands
	Using the ELSE Command
	Nesting IF Conditional Statements
	Command Format - IF, ELSE and ENDIF
	Example using IF, ELSE and ENDIF:

	Subroutines
	Stack Manipulation
	Auto-Start Routine
	Automatic Subroutines for Monitoring Conditions
	Example - Limit Switch:
	Example - Position Error
	Example - Input Interrupt
	Example - Motion Complete Timeout
	Example - Command Error
	Example - Command Error w/Multitasking
	Example - Communication Interrupt
	Example – Ethernet Communication Error

	Mathematical and Functional Expressions
	Mathematical Operators
	Bit-Wise Operators
	 Functions

	Variables
	Programmable Variables
	Valid Variable Names
	Invalid Variable Names
	Assigning Values to Variables:
	Assigning Variable Values to Controller Parameters
	Displaying the value of variables at the terminal
	Example - Using Variables for Joystick

	Operands
	Examples of Internal Variables:
	Special Operands (Keywords)
	Examples of Keywords:

	Arrays
	Defining Arrays
	Assignment of Array Entries
	Using a Variable to Address Array Elements
	Uploading and Downloading Arrays to On Board Memory

	Automatic Data Capture into Arrays
	 Command Summary - Automatic Data Capture
	Data Types for Recording:
	Operand Summary - Automatic Data Capture
	Example - Recording into An Array

	De-allocating Array Space

	Input of Data (Numeric and String)
	Input of Data
	Cut-to-Length Example

	Operator Data Entry Mode
	Using Communication Interrupt
	Inputting String Variables

	Output of Data (Numeric and String)
	Sending Messages
	Specifying the Port for Messages:
	Formatting Messages
	Using the MG Command to Configure Terminals
	Summary of Message Functions

	Displaying Variables and Arrays
	Example - Printing a Variable and an Array element

	Interrogation Commands
	Using the PF Command to Format Response from Interrogation Commands
	Removing Leading Zeros from Response to Interrogation Commands
	Local Formatting of Response of Interrogation Commands

	Formatting Variables and Array Elements
	Local Formatting of Variables

	Converting to User Units

	Hardware I/O
	Digital Outputs
	Example- Set Bit and Clear Bit
	Example- Output Bit
	Example- Output Port
	Example - Turn on output after move

	Digital Inputs
	Example - Using Inputs to control program flow
	Example - Start Motion on Switch

	The Auxiliary Encoder Inputs
	Input Interrupt Function
	Example - Input Interrupt

	Analog Inputs
	Example - Position Follower (Point-to-Point)
	Example - Position Follower (Continuous Move)

	Extended I/O of the DMC-40x0 Controller
	Configuring the I/O of the DMC-40x0
	Saving the State of the Outputs in Non-Volatile Memory
	Accessing Extended I/O

	Example Applications
	Wire Cutter
	X-Y Table Controller
	Speed Control by Joystick
	Position Control by Joystick
	Backlash Compensation by Sampled Dual-Loop

	Chapter 8 Hardware & Software Protection
	Introduction
	Hardware Protection
	Output Protection Lines
	Amp Enable
	Error Output

	Input Protection Lines
	General Abort
	Selective Abort
	ELO (Electronic Lock Out)
	Forward Limit Switch
	Reverse Limit Switch

	Software Protection
	Programmable Position Limits
	Off-On-Error
	Automatic Error Routine
	Limit Switch Routine

	 Chapter 9 Troubleshooting
	Overview
	Installation
	Stability
	Operation

	Chapter 10 Theory of Operation
	Overview
	Operation of Closed-Loop Systems
	System Modeling
	Motor-Amplifier
	Voltage Drive
	Current Drive
	Velocity Loop

	Encoder
	DAC
	Digital Filter
	ZOH

	System Analysis
	System Design and Compensation
	The Analytical Method
	Equivalent Filter Form - DMC-40x0

	 Appendices
	Electrical Specifications
	Servo Control
	Stepper Control
	Input / Output
	Power Requirements

	 Performance Specifications
	Minimum Servo Loop Update Time:

	 Fast Update Rate Mode
	 Power Connectors for the DMC-40x0
	Overview
	Molex Part Numbers Used

	 Connectors for ICM-42000 Interconnect Board
	ICM-42000 I/O (A-D) 44 pin D-Sub Connector (Female)
	ICM-42000 DMC-40x0 I/O (E-H) 44 pin D-Sub Connector (Female)
	ICM-42000 External Driver (A-D) 44 pin D-Sub Connector (Male)
	ICM-42000 External Driver (E-H) 44 pin D-Sub Connector (Male)
	 ICM-42000 Encoder 15 pin D-Sub Connector (Female)
	ICM-42000 Analog 15 pin D-sub Connector (Male)

	 Connectors for ICM-42200 Interconnect Board
	ICM-42200 I/O (A-D) 44 pin D-Sub Connector (Female)
	ICM-42200 DMC-40x0 I/O (E-H) 44 pin D-Sub Connector (Female)
	 ICM-42200 Encoder 26 pin D-Sub Connector (Female)
	ICM-42200 Analog 15 pin D-sub Connector (Male)

	 Connectors for CMB-41012 Interconnect Board
	CMB-41012 Extended I/O 44 pin D-Sub Connector (Male)
	RS-232-Main Port (Male)
	Baud Rate Jumper Settings

	RS-232-Auxiliary Port (Female)
	RS-422-Main Port (Non-Standard Option)
	RS-422-Auxiliary Port (Non-Standard Option)
	Ethernet

	Jumper Description for ICM-42000 and CMB-41012
	 Cable Connections for DMC-40x0
	Standard RS-232 Specifications
	25 pin Serial Connector (Male, D-type)
	 9 Pin Serial Connector (Male, D-type)

	DMC-40x0 Serial Cable Specifications
	Cable to Connect Computer 25 pin to Main Serial Port
	Cable to Connect Computer 9 pin to Main Serial Port Cable (9 pin)
	Cable to Connect Computer 25 pin to Auxiliary Serial Port Cable (9 pin)
	Cable to Connect Computer 9 pin to Auxiliary Serial Port Cable (9 pin)

	Pin-Out Description for DMC-40x0
	Outputs
	Inputs

	 Configuring the Amplifier Enable Circuit
	ICM-42000 and ICM-42100
	DMC-4040 (Steps 1 and 2)
	Step 1: Remove Cover
	Step 2: Remove ICM

	 DMC-4080 (Steps 1 and 2)
	Step 1: Remove Cover
	Step 2: Remove ICM(s)

	 DMC-4040 and DMC-4080 (Step 3)
	Step 3: Configure Circuit
	 +5V High Amp Enable Sinking Configuration (Default)
	+5V Low Amp Enable Sinking Configuration
	 +5V High Amp Enable Sourcing Configuration
	+5V Low Amp Enable Sourcing Configuration
	 +12V High Amp Enable Sinking Configuration
	+12V Low Amp Enable Sinking Configuration
	 +12V High Amp Enable Sourcing Configuration
	+12V Low Amp Enable Sourcing Configuration
	 Isolated Power High Amp Enable Sinking Configuration
	Isolated Power Low Amp Enable Sinking Configuration
	 Isolated Power High Amp Enable Sourcing Configuration
	Isolated Power Low Amp Enable Sourcing Configuration

	DMC-4040 (Steps 4 and 5)
	Step 4: Replace ICM
	 Step 5: Replace Cover

	 DMC-4080 (Steps 4 and 5)
	Step 4: Replace ICM(s)
	 Step 5: Replace Cover

	 Coordinated Motion - Mathematical Analysis
	Example- Communicating with OPTO-22 SNAP-B3000-ENET
	 DMC-40x0/DMC-2200 Comparison
	 List of Other Publications
	Training Seminars
	Contacting Us
	 WARRANTY

	 Integrated Amplifiers and Drivers
	Overview
	A1 – AMP-43040 (-D3040)
	A2 – AMP-43140 (-D3140)
	A3 – SDM-44040 (-D4040)
	A4 – SDM-44140 (-D4140)

	 A1 – AMP-43040
	Introduction
	 Electrical Specifications
	Mating Connectors

	Operation
	Brushless Motor Setup
	Brushless Amplifier Software Setup
	Chopper Mode
	Brush Amplifier Operation
	Using External Amplifiers
	Error Monitoring and Protection
	Hall Error Protection
	Under-Voltage Protection
	Over-Voltage Protection
	Over-Current Protection
	Over-Temperature Protection
	ELO Input

	 A2 – AMP-43140
	Introduction
	 Electrical Specifications
	Mating Connectors

	Operation
	Using External Amplifiers
	ELO Input

	 A3 – SDM-44040
	Introduction
	 Electrical Specifications
	Mating Connectors

	 Operation
	Current Level Setup (AG Command)
	Low Current Setting (LC Command)
	Step Drive Resolution Setting (YA command)
	ELO Input

	 A4 – SDM-44140
	Introduction
	 Electrical Specifications
	Mating Connectors

	 Operation
	Current Level Setup (AG Command)
	Low Current Setting (LC Command)
	ELO Input

	 Index

