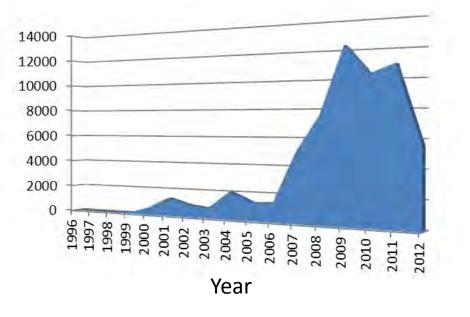

Department of Molecular Physiology and Biological Physics

Quality assessment and systematic classification of magnesium binding sites in RNA crystal structures

<u>Ivan Shabalin</u>[#], <u>Heping Zheng</u>[#], Katarzyna Mikolajczak and Wladek Minor ([#]equal contribution)

2013 ACA Meeting, Hawaii, July 20 -24, 2013

Role of magnesium ions in RNA



- Key factor governing RNA folding and maintaining 3D structure crucial for many diverse functions of RNA molecules
- Mediate recognition of binding partners in some RNA molecules
- Directly mediate catalytic processes in some ribozymes
- Most abundant metal in RNA crystal structures

- Charge compensation
- Magnesium clamps

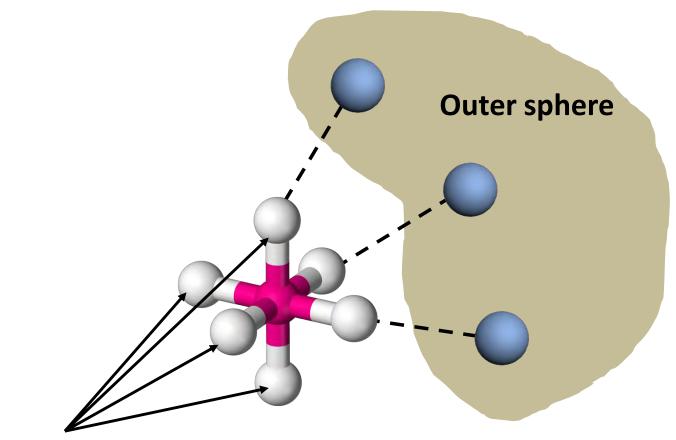
Magnesium ions in RNA: goals

Number of magnesium ions in RNA structures in PDB

- Create a comprehensive survey of magnesium binding sites in RNA
- Develop tools for annotation and comparison of magnesium-binding sites and motifs

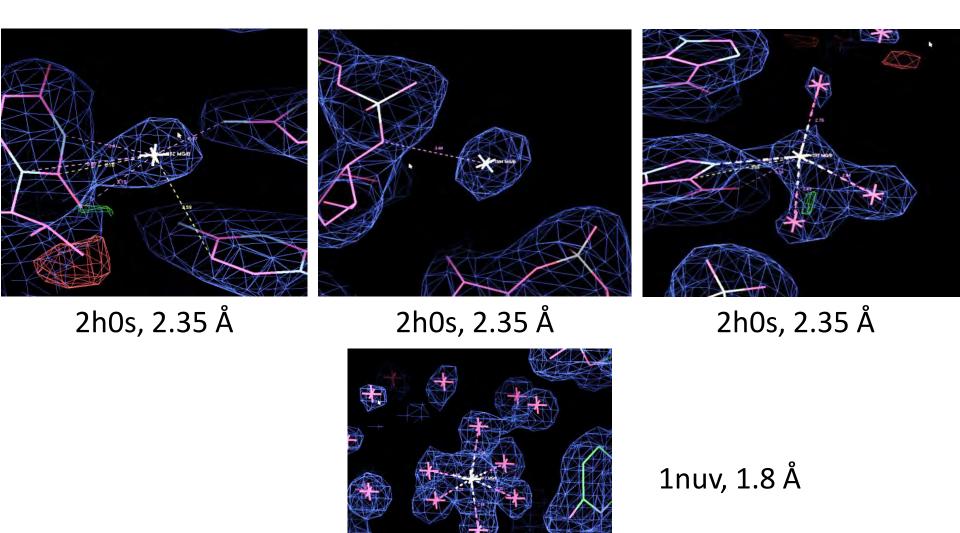
Should facilitate understanding and prediction of RNA structure and function

60145 magnesium ions from 778 RNA structures (December 2012)


Talk outline

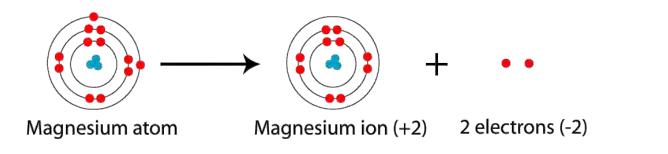
- Quality assessment of magnesium sites in RNA structures and benchmark dataset
- Systematic classification
- Detection of previously reported magnesiumbinding motifs and the discovery of new motifs

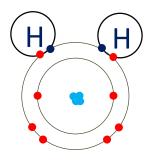
Part I


Quality assessment of magnesium sites in RNA structures

Definitions

Inner sphere ligands (single atoms!)

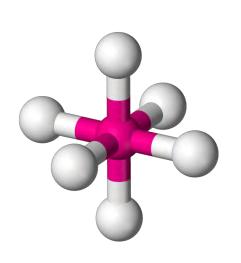

Many magnesium ions in RNA structures are poorly modeled or misidentified

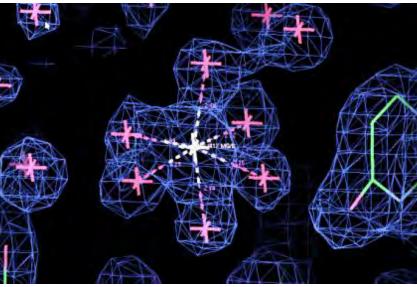


Difficulties in Mg²⁺ identification

• Cannot be detected by anomalous diffraction

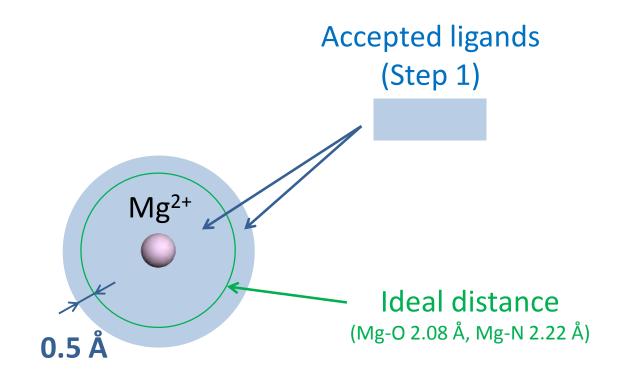
• Has the same number of electrons (10) as water molecules or sodium ions

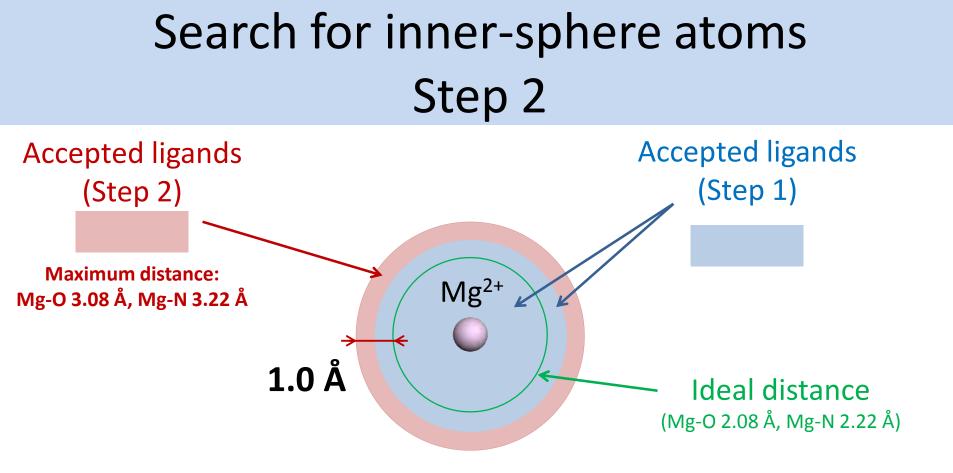




Water molecule

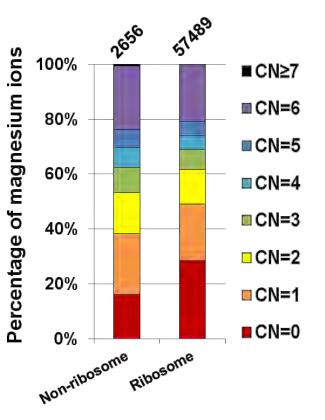
Possible way of Mg²⁺ identification


- Rigid octahedral arrangement of inner sphere ligands
- CN (coordination number) = 6
- Relatively short ideal Mg²⁺-ligand distances (2.08 Å for Mg²⁺-O interaction)

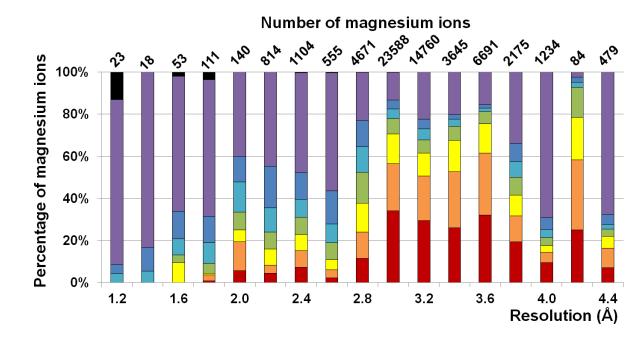


1nuv, 1.8 Å

Search for inner-sphere atoms Step 1



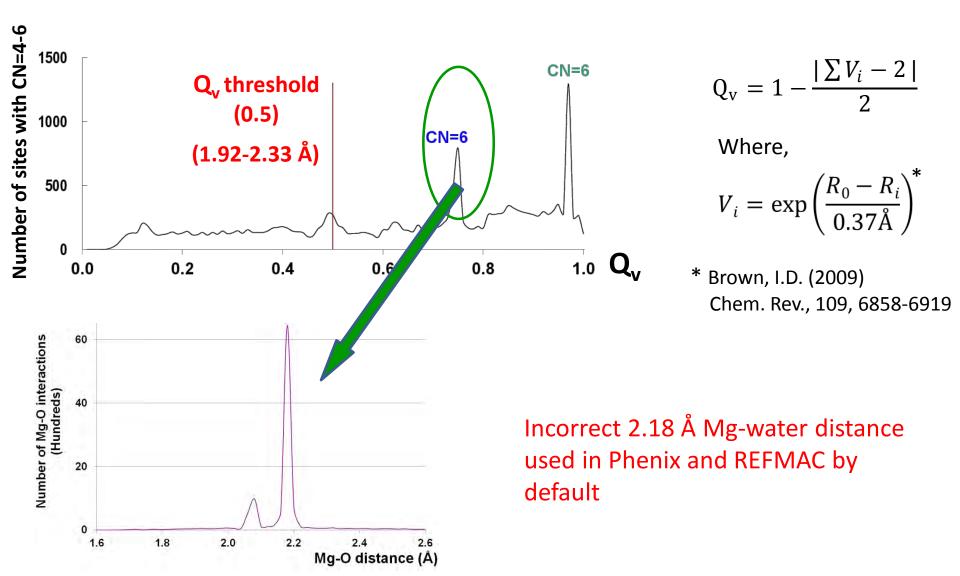
All oxygen and nitrogen atoms with a distance d to a Mg²⁺ ion $d \le d_{ideal} + 0.5 \text{ Å}$ were identified as ligands



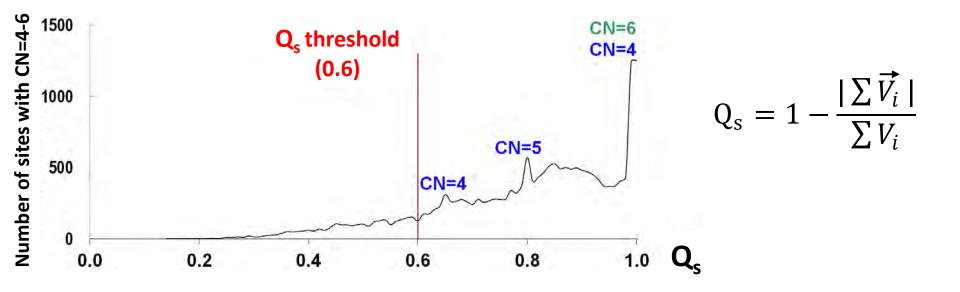
- 1) Search stops after 6 closest ligands are found
- 2) All new ligands should have a ligand-Mg-ligand angle of more than 50° with all previously found ligands.
- 3) Amongst nitrogen atoms only endocyclic nitrogen (–N=) without hydrogen bond(s) to a non-water molecule were accepted
- 4) No bidentate interaction with phosphate group

Prevalence of poorly coordinated magnesium ions in RNA structures

- More than half of the magnesium ions exhibit a very incomplete inner-sphere with CN < 3
- Magnesium ions with CN=4-6 comprised of 31% of sites for ribosome, and 37% of sites for non-ribosome
- Low CN even at high resolution

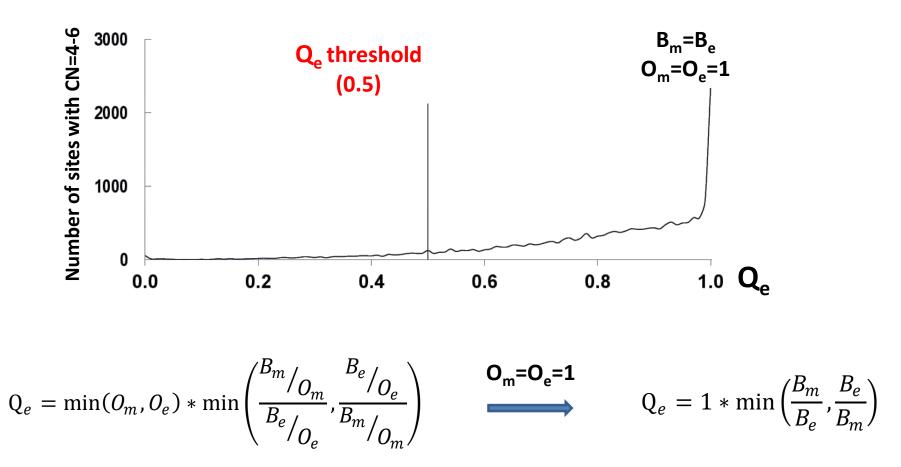


Quality assessment parameters

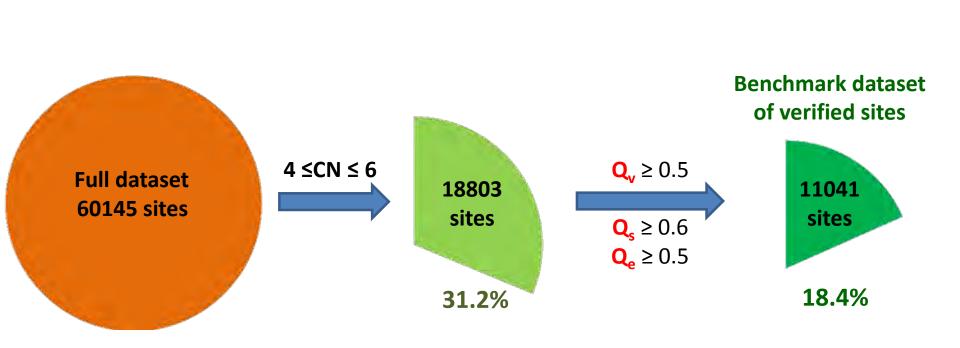

- **1. 4** ≤CN ≤ **6**
- 2. Quality of valence sum (Q_v)
- **3.** Quality of symmetry of ligands distribution (Q_s)
- Quality of B-factor correlation with B-factor of local environment (Q_e)

2. Quality of valence sum (Q_v)

Agreement of the bond valence sum (ΣV_i) with the magnesium oxidation state (+2)

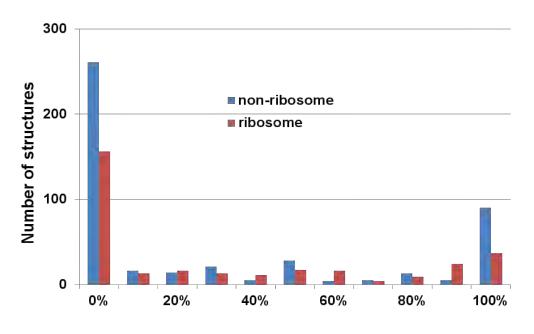


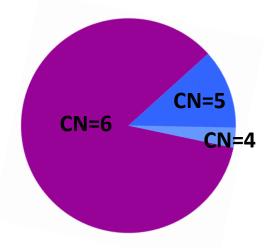
3. Quality of symmetry of ligands distribution around the magnesium (Q_s)


 \mathbf{Q}_{s} reflects the geometrical symmetry of the coordination sphere required for the octahedral geometry. It represents the summation of bond valence vectors (\vec{V}_{i})

4. Quality of B-factor correlation with Bfactor of local environment (Q_e)

 \mathbf{Q}_{e} reflects the agreement of the magnesium B-factor (B_{m}) and occupancy (O_{m}) with its environment (B_{e}, O_{e}) within 4 Å of the magnesium

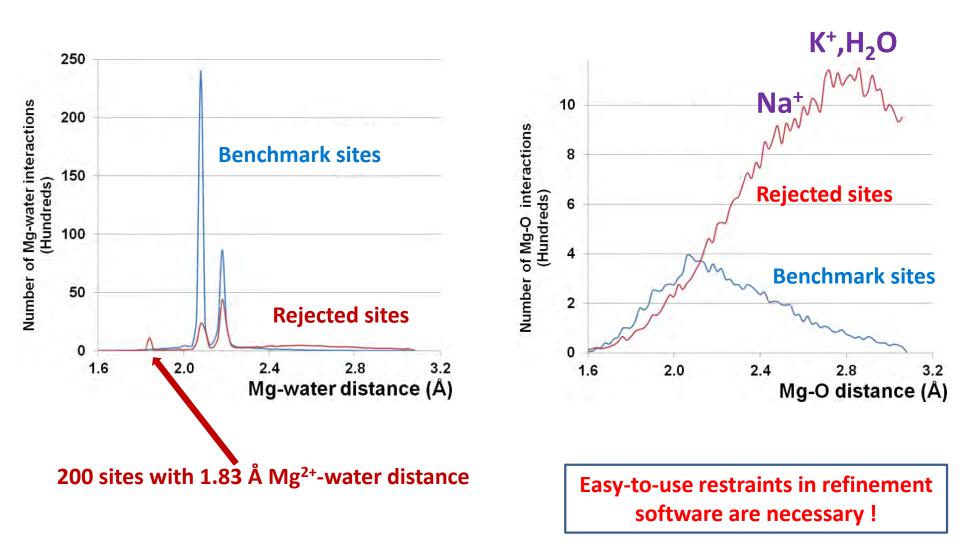

The benchmark dataset

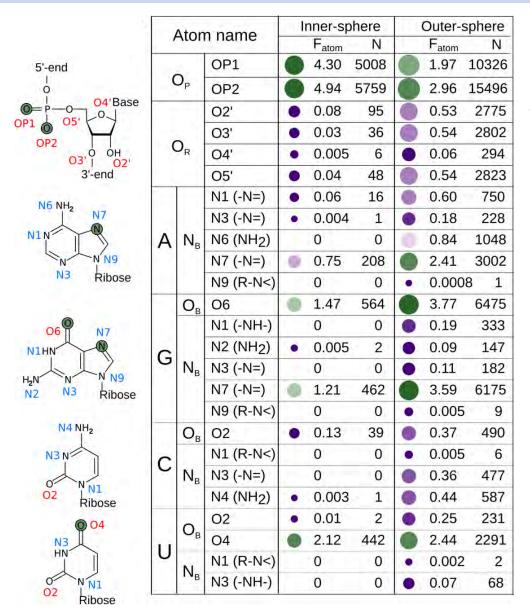


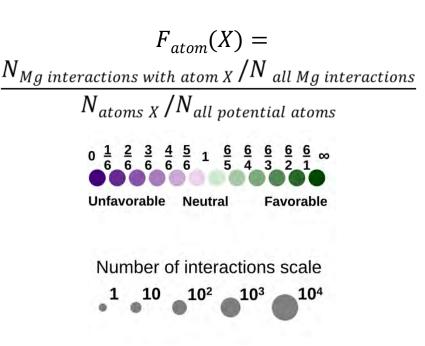
- 10499 sites from 179 ribosomal structures
- 542 sites from 164 non-ribosomal structures

The benchmark dataset

Percentage of benchmark sites per structure

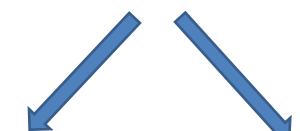



Coordination number of sites in the benchmark dataset


Tendency to have all good sites or all bad sites in a RNA structure

Distances in benchmark sites and in rejected sites

Normalized frequencies of nucleotide atoms for magnesium coordination



These preferences can be used in crystallographic model building and binding sites' prediction

Part II

Systematic classification of magnesium sites in RNA structures

RNA-inner

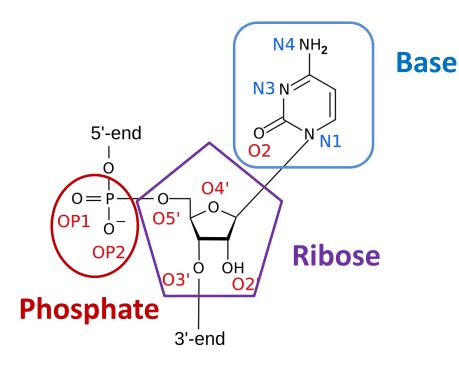
(at least one RNA atom in the inner sphere)

RNA-outer

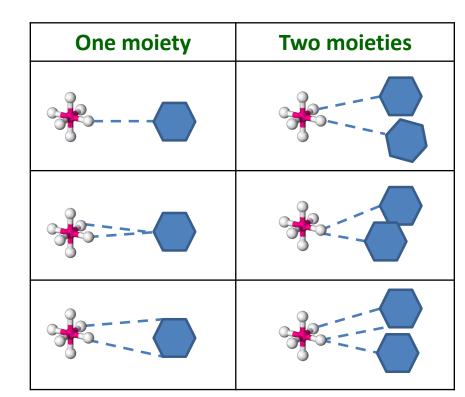
(only water in inner sphere, but RNA present the outer sphere)

(sites with inner-sphere interactions with protein or small molecule were excluded)

RNA-inner class


Number of phosphate oxygens	Number of ribose and base atoms	Combination of ribose and base atoms + Geometrical isomerism		
		Site type	Number of sites	
		O _R	17	
	$\#(O_{R}/O_{R}/N_{R})=1$	O _B	300	
		N _B	187	
# <mark>О</mark> _Р =0		20 ₈	5	
(657)		0 _R •0 _B	1	
(/	$\#(O_{R}/O_{R}/N_{R})=2$	20 ₈	5	
		O _B ●N _B	13	
		2N _B	122	
		cis-20 _P	1403	
	#(O _R /O _B /N _B)=0	trans-20 _P	193	
		cis-20 _P •0 _R	35	
# <mark>0</mark> _P =2	$\#(O_{\rm R}/O_{\rm R}/N_{\rm R})=1$	cis-20 _p •0 _B	94	
		cis-20 _p •N _B	96	
(1843)		cis-20 _P •20 _R	1	
	#(0 (0 (N))-2	cis-20 _P •0 _R •0 _B	2	
	#(O _R /O _B /N _B)=2	cis-20 _P •20 _B	18	
		trans-20 _P •20 _B	1	

Classification is based on combination of ligands in the inner sphere


Num	ber of atoms	Site type	Number of sites	
	#(O _R /O _B /N _B)=1	O _R O _B N _B	17 300 187	RNA-inner class 7285 sites
#O _p =0	#(O _R /O _B /N _B)=2	20 _R 0 _R •0 _B 20 _B	5 1 10	39 site types
(657)		O _B •N _B 2N _B	13 122	
	$\#(O_{R}/O_{B}/N_{B})=3$	20 _B •N _B	1	
	#(O _R /O _B /N _B)=4	20 _R •20 _B	1	
		O _P O _P •P _{out}	410 913	Additional criteria for most
	#(O _R /O _B /N _B)=0	O _P •2P _{out} O _P •3P _{out}	1156 645	\leftarrow populous site type (O_P) – number
#0 _p =1		O _P •4P _{out} O _P •5P _{out}	173 27	of phosphates in the outer
(3937)	#(O _R /O _B /N _B)=1 #(O _R /O _B /N _B)=2	O _P •O _R O _P •O _B	44 454	sphere
		O _P •N _B O _P •2O _R	104 8	
		Ο _P •2Ο _B Ο _P •Ο _B •N _B	1 1	
	#(O _R /O _B /N _B)=3	0 _P •0 _R •20 _B	1	
	#(O _R /O _B /N _B)=0	cis-20 _P trans-20 _P	1403 193	<i>cis</i> - conformation is 9 times more
#O _P =2	#(O _B /O _B /N _B)=1	cis-20 _P •0 _R cis-20 _P •0 _B	35 94	populous than <i>trans</i> -
(1843)		cis-20 _P •N _B cis-20 _P •20 _R	96 1	
	#(O _R /O _B /N _B)=2	<i>cis</i> -20 _P •0 _R •0 _B <i>cis</i> -20 _P •20 _B	2 18	The names of site types give
		trans-20 _P •20 _B	1	extensive information about the
	#(O _R /O _B /N _B)=0	fac-30 _₽ mer-30 _₽	353 365	ligands
#O _p =3 (796)	#(O _R /O _B /N _B)=1	$\frac{fac-3O_{P}\bullet O_{R}}{mer-3O_{P}\bullet O_{R}}$ $\frac{fac-3O_{P}\bullet O_{R}}{fac-3O_{P}\bullet O_{R}}$	3 19 55	
		mer-30 _P •0 _B	1	
#O _p =4 (52)	#(O _R /O _B /N _B)=0	40 _P	52	Maximal number of phosphates

RNA-outer class: Outer-sphere moieties

Definition

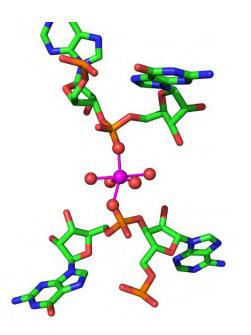
Outer-sphere moieties count

RNA-outer class

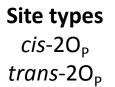
3243 sites 80 site types

Number of moieties			Number of		
		Site type	sites		
Phosphate	Ribose/Base		51105		
Thosphate		R _{out}	19		
	#(R _{out} /B _{out})=1	B _{out}	70		
		2R _{out}	1		
	#(R _{out} /B _{out})=2	R _{out} ●B _{out}	7		
	"("out/ Pout/ -	2B _{out}	404		
		2R _{out} •B _{out}	2		
	#(R _{out} /B _{out})=3	R _{out} •2B _{out}	9		
		3B _{out}	230		
		2R _{out} •2B _{out}	1		
#P _{out} =0	#(R _{out} /B _{out})=4	R _{out} •3B _{out}	12		
(927)		4B _{out}	62		
(/		2R _{out} •3B _{out}	3		
	#(R _{out} /B _{out})=5	R _{out} •4B _{out}	5		
		5B _{out}	27		
		4R _{out} •2B _{out}	1		
	#(R _{out} /B _{out})=6	R _{out} •5B _{out}	1		
		6B _{out}	68		
	#(R _{out} /B _{out})=7	7B _{out}	4		
	#(R _{out} /B _{out})=8	4R _{out} ●4B _{out}	1		
	#(R _{out} /B _{out})=0	P _{out}	57		
		P _{out} ●R _{out}	25		
	#(R _{out} /B _{out})=1	P _{out} ●B _{out}	152		
		P _{out} •2R _{out}	1		
	#(R _{out} /B _{out})=2	P _{out} ●R _{out} ●B _{out}	9		
		P _{out} ●2B _{out}	227		
		P _{out} ●2R _{out} ●B _{out}	1		
#P _{out} =1	#(R _{out} /B _{out})=3	P _{out} ●R _{out} ●2B _{out}	28		
(843)		P _{out} •3B _{out}	222		
		P _{out} ●3R _{out} ●B _{out}	1		
	#(P /P)_/	P _{out} •2R _{out} •2B _{out}	4		
	#(R _{out} /B _{out})=4	P _{out} ●R _{out} ●3B _{out}	17		
		P _{out} ● 4B _{out}	81		
		P _{out} ●2R _{out} ●3B _{out}	3		
	#(R _{out} /B _{out})=5	P _{out} ●R _{out} ●4B _{out}	3		
		P _{out} ●5B _{out}	12		

		-				
-	#(R _{out} /B _{out})=0	2P _{out}	138			
		2P _{out} •R _{out}	24			
	#(R _{out} /B _{out})=1	2P _{out} •B _{out}	117			
	#(R _{out} /B _{out})=2		23			
	#(Nout/ Dout/ - 2		174			
	#(R _{out} /B _{out})=3	2P _{out} •R _{out} •2B _{out}				
#P _{out} =2	"("out/ Pout/					
(728)						
(720)	#(R _{out} /B _{out})=4	2Pout *Bout 24 2Pout *Bout 117 2Pout *Rout *Bout 23 2Pout *Rout *Bout 174 2Pout *Rout *2Bout 15 2Pout *Rout *2Bout 15 2Pout *Rout *2Bout 7 2Pout *Rout *3Bout 27 2Pout *Rout *3Bout 27 2Pout *Rout *3Bout 3 2Pout *Rout *Bout 3 2Pout *Rout *Bout 3 3Pout *Rout *Bout 1 3Pout *Rout *Bout 1 3Pout *Rout *Bout 1				
		$2P_{out} \bullet 4B_{out}$				
	#/D /D \-C	$2P_{out} \bullet 2R_{out} \bullet 3B_{out}$				
	#(R _{out} /B _{out})=5	2Pout*Bout 24 2Pout*Bout 117 2Pout*Bout 23 2Pout*Bout 174 2Pout*Bout 174 2Pout*Bout 15 2Pout*Bout 15 2Pout*Bout 15 2Pout*Bout 7 2Pout*Bout 7 2Pout*Bout 7 2Pout*Bout 3 3Pout*Bout 2 3Pout*Bout 39 3Pout*Bout 39 3Pout*Bout 39 3Pout*Bout 39 3Pout*Bout 5 3Pout*Bout 5 3Pout*Bout 5 3Pout*Bout 5 3Pout*Bout 5 3Pout*Bout				
			Rout • 3Bout 27 ut • 4Bout 44 2Rout • 3Bout 3 Rout • 4Bout 5 ut • 5Bout 3 Rout • 5Bout 1 ut • 5Bout 2 3Pout 107 out • 6Bout 2 3Pout 107 out • 2Rout 3 • Rout • 8Dout 23 ut • 2Rout 3 • Rout • 8Dout 23 ut • 2Rout 34 2Rout • 8Dout 5 Rout • 2Bout 39 ut • 3Bout 25 2Rout • 2Bout 1 Rout • 3Bout 17 ut • 4Bout 18 2Rout • 3Bout 2 Rout • 3Bout 2 Rout • 3Bout 2 Rout • 4Bout 9			
	#(R _{out} /B _{out})=6	2P •6R				
	#(R _{out} /B _{out})=0					
	#(R _{out} /B _{out})=1	3P _{out} •R _{out}				
		3P _{out} •B _{out}	24 117 23 174 15 145 7 27 44 3 5 3 3 1 2 3 3 1 2 3 3 9 0 0 3 3 2 3 3 9 0 0 3 3 2 3 3 9 0 0 3 3 2 3 3 9 0 0 3 3 2 3 3 9 0 0 3 3 2 3 3 9 0 0 3 3 2 3 3 9 0 0 3 3 2 3 3 9 0 0 3 3 2 3 3 1 2 3 3 9 0 0 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3			
	#(R /R \-2		_			
	#(R _{out} /B _{out})=2	2Pout*Rout 24 2Pout*Bout 117 2Pout*Rout*Bout 23 2Pout*ZBout 174 2Pout*Rout*2Bout 15 2Pout*Rout*2Bout 15 2Pout*Rout*2Bout 15 2Pout*Rout*2Bout 7 2Pout*Rout*2Bout 7 2Pout*Rout*3Bout 27 2Pout*Rout*3Bout 3 2Pout*Rout*3Bout 3 2Pout*Rout*3Bout 3 2Pout*Rout*3Bout 3 2Pout*Sbout 3 2Pout*Sbout 3 2Pout*Sbout 3 2Pout*Sbout 3 2Pout*Sbout 3 3Pout*Sbout				
		2D a2D aP				
#P _{out} =3	#/p /p _2	2Pout •6Bout 2 3Pout 107 3Pout •Rout 39 3Pout •Bout 90 3Pout •Rout •Bout 90 3Pout •Rout •Bout 3 3Pout •Rout •Bout 23 3Pout •Rout •Bout 23 3Pout •Rout •Bout 5 3Pout •2Bout 84 3Pout •2Bout 39 3Pout •2Bout 39 3Pout •2Bout 39 3Pout •2Bout 10 3Pout •2Bout 39 3Pout •2Bout 10 3Pout •2Bout 10 3Pout •2Bout 10 3Pout •2Bout 10 3Pout •2Bout 1 3Pout •2Rout •3Bout 17 3Pout •2Rout •3Bout 2 3Pout •2Rout •3Bout 2 3Pout •2Rout •3Bout 2 3Pout •2Rout •3Bout 9 3Pout •5Bout 6				
	#(R _{out} /B _{out})=3		24 117 23 174 15 145 7 27 44 3 5 3 1 2 107 39 90 3 2 1 107 39 90 3 2 3 8 4 5 3 9 9 0 3 2 3 8 4 5 3 9 9 0 3 2 3 8 4 5 3 9 9 0 3 2 3 8 4 5 3 9 9 0 3 2 3 8 4 5 3 9 9 0 3 2 3 8 4 5 3 9 9 0 3 2 3 8 4 5 3 9 9 0 3 2 3 8 4 5 3 9 9 0 3 2 3 8 4 5 5 3 9 9 0 3 2 3 8 4 5 5 3 9 9 6 1 1 1 7 18 8 2 9 9 6 1 1 17 18 8 2 9 6 6 1 1 105 3 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1			
(469)			24 117 23 174 15 145 7 27 44 3 5 3 1 2 1 1 2 107 39 90 3 23 84 5 39 90 3 23 84 5 39 25 1 1 17 18 2 39 90 3 23 84 5 39 90 6 1 17 18 2 39 90 6 1 17 18 2 39 90 6 1 17 18 2 107 18 2 107 18 2 107 18 2 107 18 2 107 18 2 107 18 2 107 18 2 107 18 2 107 18 2 107 18 2 107 18 2 107 107 18 2 107 107 107 107 107 107 107 107			
	#(R _{out} /B _{out})=4					
	"("out/ Cout/-4					
		3Pout • 2Rout • 3Bout				
	#(R _{out} /B _{out})=5	3Pout • Rout • 4Bout	9			
		3Pout • 2Rout • 3Bout 2 3Pout • Rout • 4Bout 9 3Pout • 5Bout 6				
	#(R _{out} /B _{out})=6		1			
	#(R _{out} /B _{out})=0		105			
		4P _{out} ●R _{out}	36			
	#(R _{out} /B _{out})=1		24 117 23 174 15 145 7 27 44 3 5 3 1 2 107 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 23 84 5 39 90 3 25 1 1 17 18 2 9 6 1 105 36 76 6 1 1 105 36 76 6 1 1 105 36 76 6 1 1 1 1 1 1 1 1 1 1 1 1 1			
#D -1	#(p /p _)	3Pout 4Bout 18 3Pout 2Rout 3Bout 2 3Pout 4Rout 9 3Pout 3Pout 3Pout 5Bout 6 3Pout 3Pout 3Pout 3Pout 6Bout 1 3Dout				
#P _{out} =4	#(R _{out} /B _{out})=2	4P _{out} •2B _{out}	26			
(254)	#/p /p _2	4P _{out} •R _{out} •2B _{out}	1			
	#(R _{out} /B _{out})=3	4P _{out} •3B _{out}	2			
	#(R _{out} /B _{out})=4	4P _{out} ●R _{out} ●3B _{out}	1			
	#(R _{out} /B _{out})=5	4P _{out} ●R _{out} ●4B _{out}	1			
	#(R _{out} /B _{out})=0	5P _{out}	8			
#P _{out} =5		5P _{out} •R _{out}	2			
	#(R _{out} /B _{out})=1	5P _{out} •B _{out}	5			
(22)	#(R /R)-2					
	#(R _{out} /B _{out})=2	5P _{out} •2B _{out}				


Part III

Detection of magnesium-binding motifs in RNA structures and discovery of new motifs

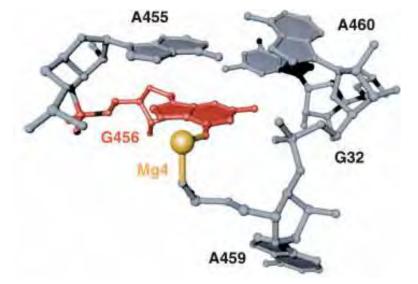

Site types define sites very specifically. Only a few additional definitions are needed to describe most magnesium binding motifs

Detection of previously reported motifs

"magnesium clamp" magnesium binds two RNA strands through its inner sphere

Ennifar, E., Yusupov, M., Walter, P., Marquet, R., Ehresmann,B., Ehresmann,C. and Dumas, P. (1999) The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. *Structure*, **7**, 1439-1449.

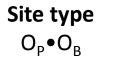
Additional criteria


The phosphates should be from different chains or from distant residues

Sufficient motif definition

814 sites found in the benchmark dataset

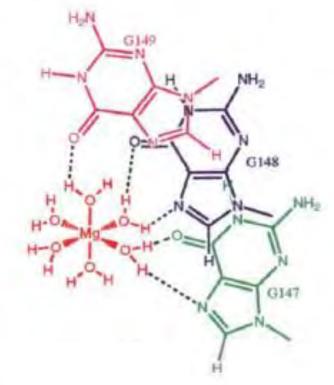
Detection of previously reported motifs


G-phosphate magnesium-binding motif

Klein, D.J., Moore, P.B. and Steitz, T.A. (2004) The contribution of metal ions to the structural stability of the large ribosomal subunit. *RNA*, **10**, 1366-1379.

Figure reproduced from Klein et al. (2004) under the terms of a Creative Commons License

+


Additional criteria O_B atom should be from distant guanine 208 sites found in

 the benchmark dataset

Detection of previously reported motifs

Triple G magnesium binding motif

Tinoco, I., Jr. and Kieft, J.S. (1997) The ion core in RNA folding. *Nat. Struct. Biol.*, **4**, 509-512.

Adapted by permission from Macmillan Publishers Ltd: [Nat. Struct. Biol.], Copyright 1997. License Number 3185491192854

+

Additional criteria

3B_{out} are sequentially consecutive guanines

23 sites found in

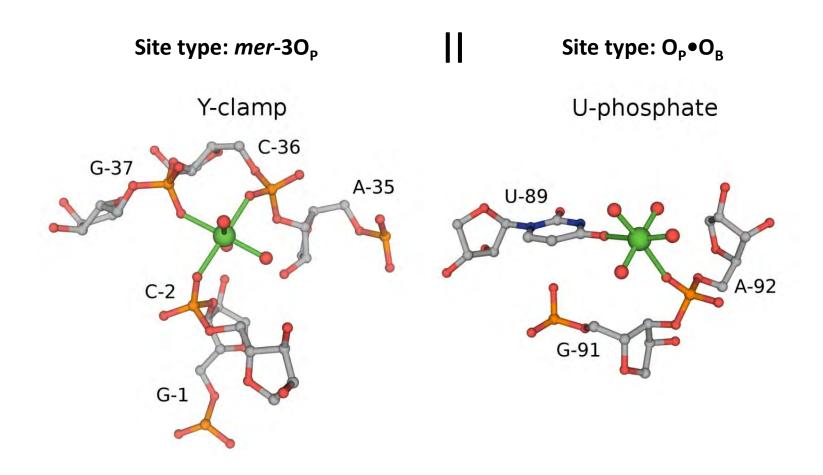
 the benchmark dataset

"Validated motif": a specific structural arrangement provided by RNA for magnesium binding which can be found in structures of multiple RNA molecules

 Only significantly represented motifs (>10 sites) are counted as "Validated motifs" in this study

Six "validated" motifs reported previously

—			Systemati	c classification	Numbe	
id	Motif name	reference	Class	Туре	Detailed features of the motif	sites
1	Magnesium clamp	Ennifar et al., 1999	RNA-inner	-inner $\int \int \int \int \int \int \partial f dx$ The two O_{α} atoms are from distant phosphates		675 - cis 139 - trans
				cis-20 _P	The two O _P atoms are from sequentially consecutive phosphates	652
	10-member	Hsiao et al.,		fac-30 _P mer-30 _P	The three O _P atoms are from sequentially consecutive phosphates	Fac (57) Mer (32)
I	ring	2009	RNA-inner	fac-3О _Р mer-3О _Р	10-member ring with additional O _P atom coming from phosphate which is separated by one residue from either 10- member ring phosphates	Fac (5) Mer (71)
				40 _P	One magnesium coordinated by two unrelated 10-member rings	31
ш	G-phosphate	Klein et al., 2004	RNA-inner	O _P ●O _B	O _B atom is from guanine	
IV	G∙G metal	Correll et al., 1997	RNA-outer	2P _{out} ●2B _{out}	Magnesium is bound through the outer-sphere by two sequentially consecutive guanines and by two phosphate moieties from residues n and n-1 where n is residue number of the lower guanine in the sequence.	61
	binding site	3ofa-A1569	NNA-Outer	2B _{out}	Magnesium is bound through the outer-sphere by two sequentially consecutive guanine moieties	268
		3v23-A3619		P _{out} ●2B _{out}	Magnesium is bound through the outer-sphere by two consecutive guanines and a distant phosphate	38
V	Triple G motif	Tinoco & Keift, 1997	RNA-outer	3B _{out}	Magnesium is bound through the outer-sphere by three sequentially consecutive guanine bases	
VI	Metal ion zipper	Correll et al., 1997	RNA-outer	2P _{out}	Magnesium binds two distant phosphates through the outer- sphere	74

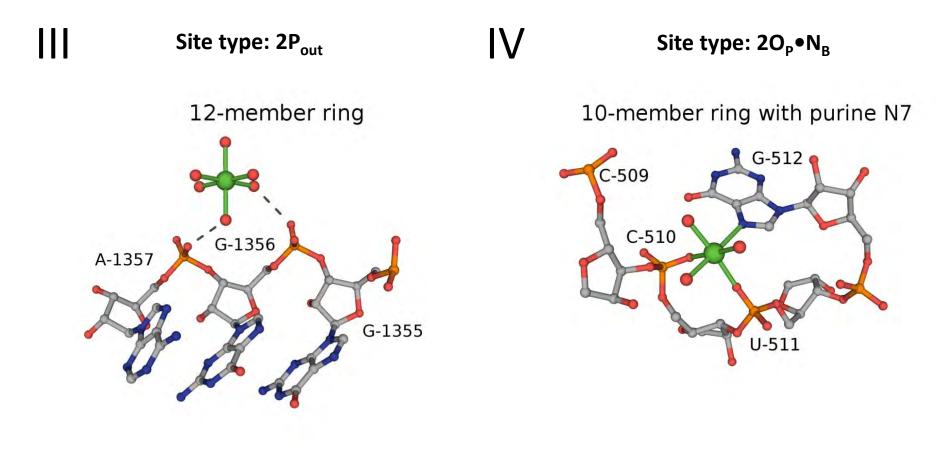

Number of atoms		Site type	Number of sites
		O _R	17
	#(O _R /O _B /N _B)=1	O _B	300
		N _B	187
		20 _R	5
#О _Р =0		O _R •O _B	1
· · ·	#(O _R /O _B /N _B)=2	20 _B	10
(657)		O _B ●N _B	13
		2N _B	122
	#(O _R /O _B /N _B)=3	20 _B ∙N _B	1
	#(O _R /O _B /N _B)=4	20 _R •20 _B	1
		O _P	410
		O _P ●P _{out}	913
	#(O _R /O _B /N _B)=0	O _P •2P _{out}	1156
		O _P •3P _{out}	645
		O _P •4P _{out}	173
#0 _P =1		O _P •5P _{out}	27
(3937)	#(O _B /O _B /N _B)=1	O _P •O _R	44
. ,		0 _P •0 _B	454
		$O_{\rm p} \bullet N_{\rm B}$ 104	104
	#(O _R /O _B /N _B)=2	0 _P •20 _R	8
		0 _P •20 _B	1
		Ο _Ρ •Ο _Β •Ν _Β	1
	#(O _R /O _B /N _B)=3	O _P •O _R •2O _B	1
	#(O _R /O _B /N _B)=0	cis-20 _P	1403
		trans-20 _P	193
		cis-20 _P •0 _R	35
#O _⊳ =2	#(O _R /O _B /N _B)=1	cis-20 _P ∙0 _B	94
•		cis-20 _P ●N _B	96
(1843)		cis-20 _P •20 _R	1
	#(O _R /O _B /N _B)=2	cis-20 _P •0 _R •0 _B	2
	$\#(O_R/O_B/N_B)=2$	cis-20 _P ●20 _B	18
		trans-20 _p •20 _B	1
	#(O _R /O _B /N _B)=0	fac-30 _P	353
	$\pi(O_R/O_B/N_B)=0$	mer-30 _P	365
#О _Р =3		fac-30 _P •0 _R	3
(796)	#(O _R /O _B /N _B)=1	mer-30 _P •0 _R	19
	$(\bigcirc_R) \bigcirc_B (\bigcirc_B) = 1$	fac-30 _P •0 _B	55
		mer-30 _P ∙O _B	1
#O _P =4 (52)	#(O _R /O _B /N _B)=0	40 _P	52

RNA-inner class 7285 sites 39 site types

> Populous site types can represent "validated" motifs

New motifs discovery is important for annotation, understanding and prediction of RNA structure

New motifs (I-II)

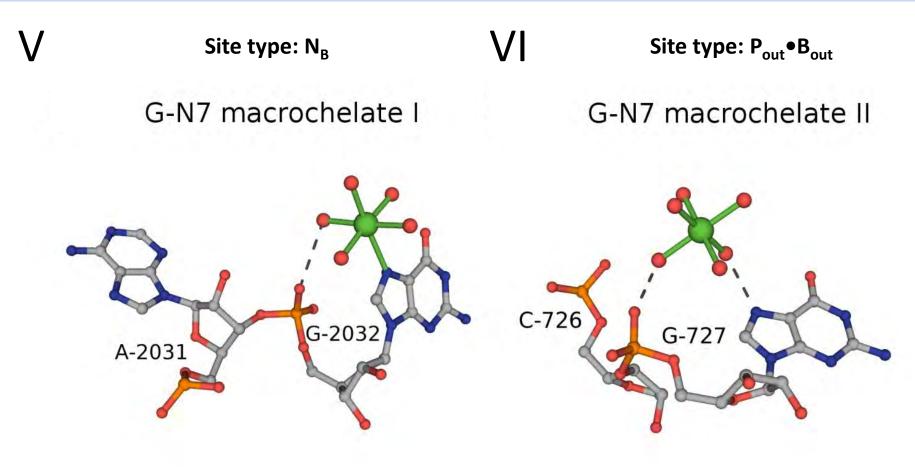


10-member ring and one distant O_P atom in *mer*- conformation

238 sites

Similar to G-phosphate, but O_B atom is from uracil **165 sites**

New motifs (III-IV)

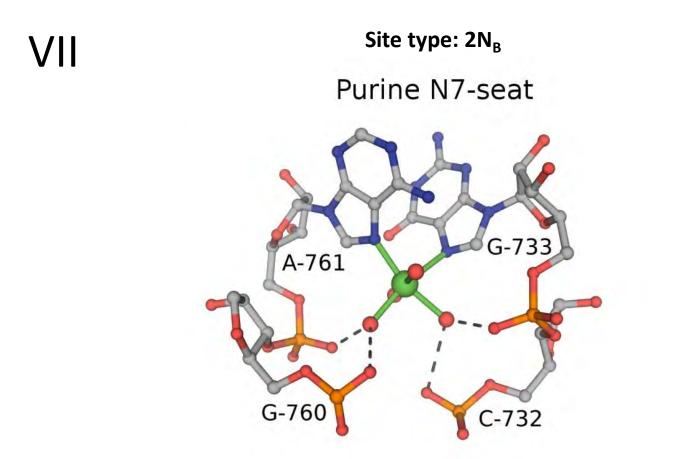

Two sequentially consecutive phosphates in the outer-sphere, forming a ring of 12 non-hydrogen atoms

10-member ring with N7 atom of purine base which is separated by one residue from either of the 10-member ring phosphates

56 sites

40 sites

New motifs (V-VI)



Magnesium is bound by guanine N7 atom in inner-sphere and phosphate of the same residue in the outer-sphere Magnesium is bound through the outersphere by guanine N7 atom and phosphate of the same residue

238 sites

16 sites

New motifs (VII)

Magnesium is bound by two guanine or adenine N7 atoms in inner-sphere and capped by 3 or 4 downstream phosphates in the outer-sphere

107 sites

Summary

- Benchmark dataset of reliable sites is built
- A systematic tree-like classification of magnesium sites is developed
- The classification was used to describe previously reported magnesium-binding motifs, to discover new motifs, and to screen the whole PDB for presence of these motifs

Potential application

- Can be used to discover unique magnesium-binding patterns and new motifs
- Annotation of RNA structures
- Magnesium binding sites prediction
- Atomic preferences can be helpful during crystallographic refinement of structures
- Improvement of magnesium modelling in new structures

The dataset is available upon request by contacting <u>wladek@iwonka.med.virginia.edu</u>

Acknowledgements

ladek Minor aboratory

Heping Zheng (equal contribution)

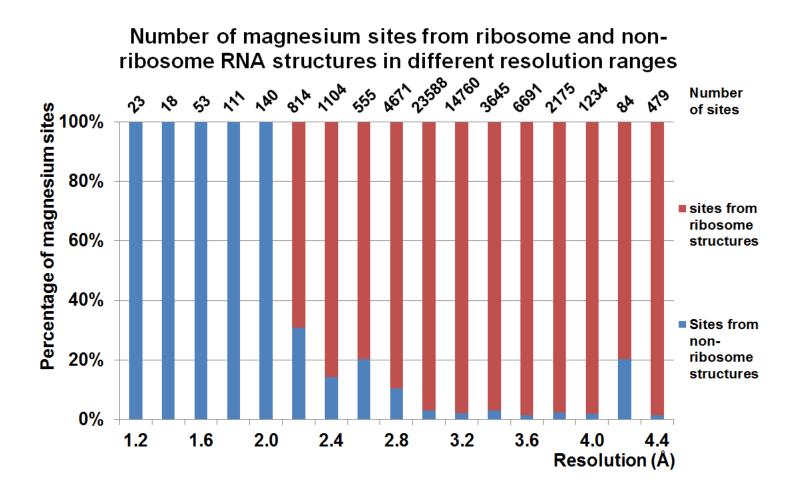
Katarzyna Mikolajczak

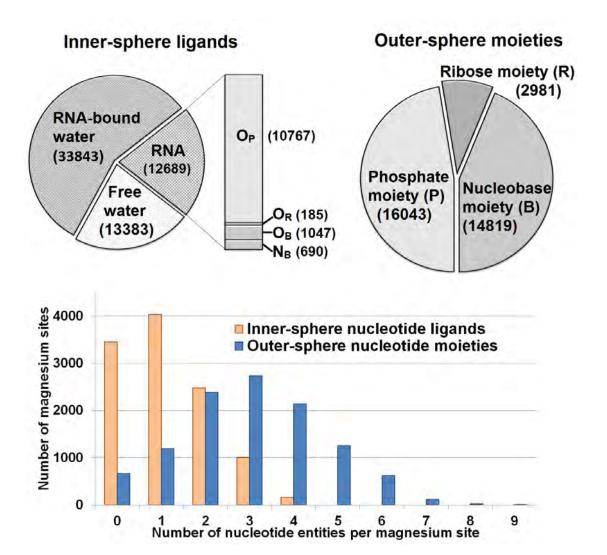
Prof. Wladek Minor

All the lab members

- CSGID, NIAID contract HHSN272201200026C
- MCSG U54- GM094585
- X-ray Crystallography of Macromolecules GM053163

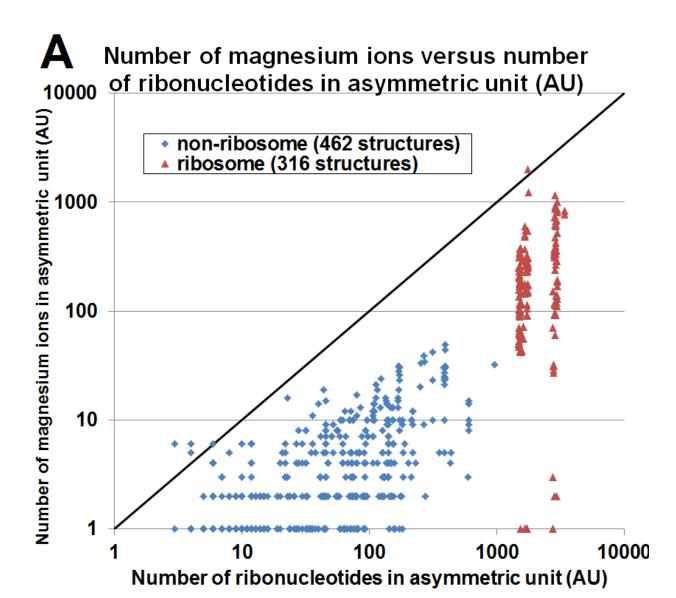
Center for Structural Genomics of Infectious Diseases

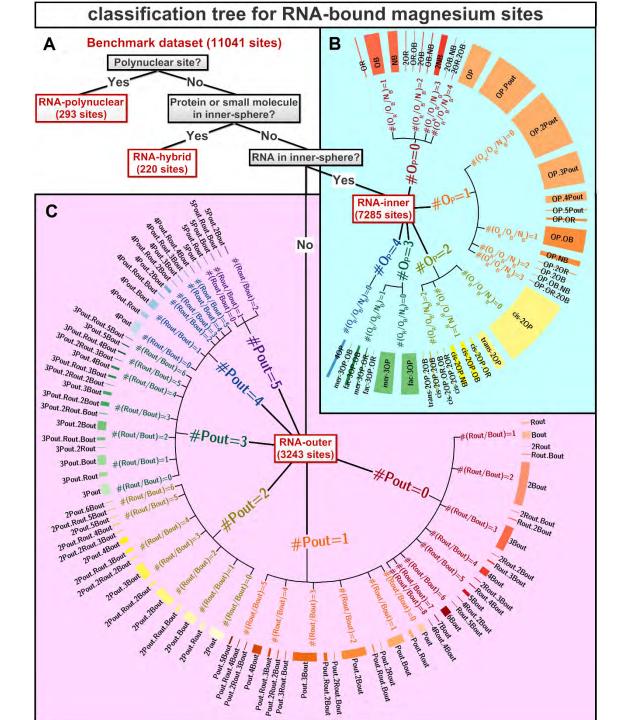



Number of sites vs. resolution

Five classes of sites in the benchmark dataset

	Total	RNA- polynuclear	RNA-hybrid	RNA-inner	RNA-outer	
all data	11041 [18]	293 [7]	220 [20]	7285 [24]	3243 [56]	
Ribosome	10499 [18]	259 [7]	156 [17]	7064 [24]	3020 [56]	
non-ribosome	542 [20]	34 [27]	64 [34]	221 [18]	223 [59]	

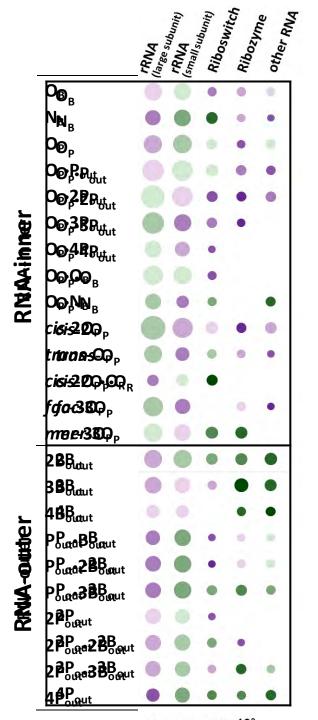

Number of inner-sphere ligands and outersphere moieties per site



Newly defined motifs

id Motif name		reference	Systematic classification		Detailed features of the motif	Number of sites
			Class	type		sites
Α	Y-clamp	2z75-B301	RNA-inner	mer-30 _P	10-member ring and one distant O _P atom in <i>mer</i> - conformation	238
В	U-phosphate	2yie-Z1116	RNA-inner	O _P ●O _B	O _B atom is from uracil	165
с	12-member ring	2avy- A1566	RNA-outer	2P _{out}	Magnesium is bound through the outer-sphere by two sequentially consecutive phosphates froming a ring with 12 non-hydrogen atoms	56
D	Purine-N7 seat	2qba-B3321	RNA-inner	2N _B	Magnesium is bound by two guanine or adenine N7 atoms in inner-sphere and capped by 3 or 4 downstream phospates through the outer-sphere	107
E	G-N7 macro- chelate I	3v29-A3359	RNA-inner	N _B	Magnesium is bound by guanine N7 atom in inner- sphere and phospate of the same residue in the outer-sphere	38
F	G-N7 macro- chelate II	2aw7-A1569	RNA-outer	P _{out} ●B _{out}	Magnesium is bound through the outer-sphere by guanine N7 atom and phospate of the same residue	16
G	10-member ring with Purine-N7	3v23-A3540	RNA-inner	20 _P ∙N _B	10-member ring with N7 atom of purine base which is separated by one residue from either of the 10-member ring phosphates	40

Number of magnesium sites per asymmetric unit



Relative abundance of magnesium site types in different RNA types

RNA classification is based on SCOR database

 $F_{S in R}(S) = \frac{N_{sites of type S in RNA type R} / Nall_{sites of type S}}{N_{sites in RNA type R} / Nall_{sites}}$ $0 \stackrel{1}{=} \stackrel{2}{=} \stackrel{3}{=} \stackrel{4}{=} \stackrel{5}{=} \stackrel{1}{=} \stackrel{6}{=} \stackrel{$

- RNA-inner sites are more abundant in the large ribosomal subunit
- RNA-outer sites are more abundant in the small ribosomal subunit

Atom Name		Inner-sphere interactions				Outer-sphere interactions				
		F _{atom}	Number of bench- mark sites	Number of all sites	Percent. of sites retained in bench-mark set	F _{atom}	Number of bench-mark sites	Number of all sites	Percent of sites retained in bench- mark set	Number of atoms in the full dataset
0	OP1	4.30	5008	16932	29.6	1.97	10326	16175	63.8	899146
O _P	OP2	4.94	5759	20182	28.5	2.96	15496	24143	64.2	899146
	O2'	0.08	95	2909	3.3	0.53	2775	4912	56.5	899146
	O3'	0.03	36	1432	2.5	0.54	2802	4388	63.9	899146
O _R	O4'	0.005	6	519	1.2	0.06	294	486	60.5	899146
	O5'	0.04	48	605	7.9	0.54	2823	4091	69.0	899146
	N1 (N-endo)	0.06	16	229	7.0	0.60	750	1018	73.7	214231
	N3 (N-endo)	0.004	1	246	0.4	0.18	228	557	40.9	214231
A	N6 (N-amino)	0	0	31	0	0.84	1048	1814	57.8	214231
	N7 (N-endo)	0.75	208	926	22.5	2.41	3002	4055	74.0	214231
	N9 (N-ribose)	0	0	4	0	0.0008	1	10	10.0	214231
	O6 (sugar opposite)	1.47	564	7288	7.7	3.77	6475	10271	63.0	295424
	N1 (NH-endo)	0	0	43	0	0.199	333	480	69.4	295424
G	N2 (N-amino)	0.005	2	38	5.3	0.09	147	226	65.0	295424
	N3 (N-endo)	0	0	163	0	0.11	182	351	51.9	295424
	N7 (N-endo)	1.21	462	2787	16.6	3.59	6175	9736	63.4	295424
	N9 (N-ribose)	0	0	18	0	0.0054	9	18	50.0	295424
	O2 (sugar side)	0.13	39	752	5.2	0.37	490	846	57.9	228245
С	N1(N-ribose)	0	0	3	0	0.005	6	18	33.3	228245
	N3 (N-endo)	0	0	180	0	0.36	477	667	71.5	228245
	N4 (N-amino)	0.003	1	60	1.8	0.44	587	870	67.5	228245
U	O2 (sugar side)	0.01	2	457	0.4	0.25	231	358	64.5	161246
	O4 (sugar opposite)	2.12	442	3364	13.1	2.44	2291	3500	65.5	161246
	N1 (N-ribose)	0	0	6	0	0.002	2	3	66.7	161246
	N3 (NH-endo)	0	0	22	0	0.07	68	112	60.7	161246

Type (# PDB structures)		PDB ID				
5s/23s rRNA (103)		1dfu, 1feu, 1ffk, 1jj2, 1k73, 1k8a, 1k9m, 1kc8, 1kd1, 1kqs, 1m1k, 1m90, 1mms, 1n8r, 1nji, 1q7y, 1q81, 1q82, 1q86, 1qvf, 1qvg, 1s72, 1vq4, 1vq5, 1vq6, 1vq7, 1vq8, 1vq9, 1vqk, 1vql, 1vqm, 1vqo, 1vqp, 1vs6, 1vs8, 1vt2, 1w2b, 1yhq, 1yi2, 1yij, 1yj9, 1yjn, 1yjw, 1ytu, 2aw4, 2awb, 2i2t, 2i2v, 2otj, 2otl, 2qam, 2qao, 2qba, 2qbc, 2qbe, 2qbg, 2qbi, 2qbk, 2qex, 354d, 3cc2, 3cc4, 3cc7, 3cce, 3ccl, 3ccn, 3ccq, 3ccr, 3ccs, 3ccu, 3ccv, 3cd6, 3cpw, 3cxc, 3g6e, 3g71, 3i1n, 3i1r, 3i20, 3i22, 3i56, 3kni, 3oas, 3oat, 3ofc, 3ofd, 3ofq, 3ofr, 3ofz, 3og0, 3orb, 3r8s, 3r8t, 3v23, 3v25, 3v27, 3v29, 3v2d, 3v2f, 4gar, 4gau				
16s rRNA (86	5)	1vs5, 1vs7, 1zz5, 2avy, 2aw7, 2fqn, 2g5k, 2i2p, 2i2u, 2j02, 2oe5, 2qal, 2qan, 2qb9, 2qbb, 2qbd, 2qbf, 2qbh, 2qbj, 2qou, 2qov, 2qow, 2qox, 2qoy, 2qoz, 2qp0, 2qp1, 2uua, 2uuc, 2v46, 2v48, 2wdg, 2wdh, 2wdk, 2xfz, 2z4k, 2z4l, 2z4m, 2z4n, 3df1, 3df2, 3df3, 3df4, 3i1m, 3i1o, 3i1p, 3i1q, 3i1s, 3i1t, 3i1z, 3i21, 3i8g, 3i9b, 3i9d, 3oaq, 3oar, 3ofa, 3ofb, 3ofo, 3ofp, 3ofx, 3ofy, 3or9, 3ora, 3td0, 3v22, 3v24, 3v26, 3v28, 3v2c, 3v2e, 4dh9, 4dha, 4dhb, 4dhc, 4dr1, 4dr2, 4dr3, 4dr4, 4dr5, 4dr6, 4dr7, 4gaq, 4gas, 4gd1, 4gd2				
	Adenosine	31a5				
	Biotin binding	1f27				
	c-di-GMP-II	3q3z				
	di-GMP-I (10)	1lng, 3mum, 3mur, 3mut, 3muv, 3mxh, 3ucu, 3ucz, 3ud3, 3ud4				
	Fluoride (4)	4en5, 4ena, 4enb, 4enc				
	FMN (2)	2yie, 2yif				
Riboswitch (40+11)	Glycine (10)	Bowi, Boww, Bowz, Boxb, Boxb, Boxd, Boxe, Boxj, Boxm, Bp49				
	Lysine	3dil				
	Purine	1y26				
	SAM (2)	3gx5, 3v7e				
	Streptomycin binding	1ntb				
	Tetracycline	Begz				
	TPP (4)	2gdi, 3d2g, 3d2v, 3d2x				
	укоК	2qbz				
	glmS (11)	2gcs, 2gcv, 2h0s, 2h0w, 2h0x, 2ho6, 2nz4, 2z75, 3b4a, 3b4b, 3b4c				
	Delta virus	βnkb				
	Diels-Alder	1yls				
Ribozyme (20+11)	HPRZ	4g6r				
	Intron_gpl (7)	1hr2, 1l8v, 1x8w, 1zzn, 2r8s, 3bo2, 3bo3				
	Intron_gpll (5)	4e8m, 4e8n, 4far, 4faw, 4fb0				
	L1-RNA-ligase (3)	3hhn, 3ivk, 3r1l				
	Lead dependent (2)	1nuj, 1nuv				
tRNA (14)		1ehz, 1evv, 1ffy, 1j1u, 1n78, 1qu2, 1tra, 2zxu, 3l0u, 3q1q, 3q1r, 4ari, 4tra, 6tna				
mRNA (4)		1l2x, 2hw8, 3mei, 437d				
SRP (3)		1d4r, 1dul, 1hq1				
	bulge	1jzv				
	duplex (17)	1 dno, 1dnt, 1fuf, 1ik5, 1o3z, 1pjo, 1y99, 2ao5, 2g91, 2oiy, 2q1r, 2r1s, 2r20, 3cgs, 3jxq, 3ssf, 462d				
	4-way junction	1egk				
	Kinkturn	Biin				
Structural model (25)	Kissing-loops	2b8s				
	Pseudoknot	2a43				
	Single strand	3twh				
	Stem-loop	1xjr				
		1tez, 1zbi, 1zbl, 2bx2, 2c0b, 2c4r, 2ez6, 2g8f, 2g8h, 2g8v, 2nuf, 2nug, 2o5i, 2ppb, 3aoh, 3dd2, 3hax, 3hif, 3hk2, 3hm9, 3ho1, 3htx, 3hvr,				

The numbers of magnesium sites found for each magnesium binding motif

Magnesium binding motif	All RNA	rRNA (large subunit)	rRNA (small subunit)	Riboswitch	Ribozyme	Other RNA
Magnesium clamp	814	573	229	6	3	3
10-member ring (IIa) <i>cis-</i> 20 _Р	652	495	124	19	5	9
10-member ring (IIb) fac-30_P, mer-30 P	89	54	30	5	0	0
10-member ring (IIc) fac-30_P, mer-30 P	76	63	8	0	5	0
10-member ring (IId) 40 _Р	51	35	13	0	3	0
G-phosphate	208	136	72	0	0	0
G•G metal binding site (IVa) 2P _{out} •2B _{out}	61	28	30	2	0	0
G•G metal binding site (IVb) 2B_{out}	268	124	125	9	7	5
G•G metal binding site (IVc) P _{out} •2B _{out}	38	15	23	0	0	0
Triple G motif	23	12	9	0	1	1
Metal ion zipper	74	41	33	0	0	0
Y-clamp	238	170	57	11	11	0
U-phosphate	165	72	91	2	0	0
12-member ring	56	32	23	1	0	0
Purine-N7 seat	107	60	47	0	0	0
G-N7 macrochelate I	38	24	14	0	0	0
G-N7 macrochelate II	16	2	14	0	0	0
10-member ring with Purine-N7	40	35	5	0	0	0