

cowbirdsinlove

Using Coot Tools for Protein-Ligand Analysis

Paul Emsley

MRC Laboratory of Molecular Biology July 2013

Using Coot Tools for Protein-Ligand Analysis

- Automated Scoring of Protein-Ligand Complexes
- Tools for editing, design of ligands
- Tools for Presentation and Navigation
- (Maybe) Fitting (N-linked) Carbohydrate

Coot Tools for Protein-Ligand Complexes

- Aim is the provide tools that analyse the ligand complex under investigation
- ... combining existing software with new tools
- ... to give it the "Green Lights" (if appropriate)
- ... judge the rank as compared to other protein-ligand complexes

Scoring Protein-Ligand Complexes

- Score all PDB protein-ligand complexes
 - The (first) biggest complete Het-group
 - No covalent link to protein
 - No alt confs
 - Het-groups with more than 6 atoms
 - Glycerol included
 - Only use accession codes with (readable) data
 - 2007-2012
 - Only those het-groups for which I could construct a molecule with sane chemistry and an MDL molfile using Refmac restraints dictionary

Scoring Protein-Ligand Complexes

- Score 3 Metrics:
 - Correlation of maps: omit vs. calculated
 - around the ligand
 - Clash-score
 - *c.f.* Molprobity tool
 - Mogul distortion
 - z-worst

Density Correlation Metric

- Identify ligand of interest
- Construct an MDL molfile?
- Remove ligand
- Run Refmac to calculate structure factors
 - omit map
- Identify correlation coefficient
 - omit map *vs.* calc map
 - in the region of the ligand

Probe Score Metric

- Using Reduce and Probe
 - Richardsons and co-workers
- Consider only protein-ligand interactions
- Count the number of "bad overlap" atom pairs

Probe Contacts

Probe Score Metric

- Using Reduce and Probe
 - Richardsons and co-workers
- Consider only protein-ligand interactions
- Count the number of "bad overlap" atom pairs

Probe Score Metric

- Using Reduce and Probe
 - Richardsons and co-workers
- Consider only protein-ligand interactions
- Count the number of "bad overlap" atom pairs

Mogul Score Metric

- Use CSD Mogul
 - MDL query
 - Coordinates from PDB ligand, bond orders from Refmac restraints
 - customized csv output
 - parsed and (interactive mode) represented in Coot

CSD Mogul

Knowledge-base of geometric parameters based on the CSD

- Can be run as a "batch job"
- Mean, median, quartiles, Z-scores.
- Query constructed as an
 MDL file using bond orders
 from the Refmac monomer
 library
- Histograms

Mogul Results Representation

Mogul Score Metric

- How do you score a ligand with distorted geometry?
- Average badness?
 - A highly distorted bond in an otherwise adequate large ligand will be hidden
- Worst z-score outlier for bonds and angles
 - Bad chemistry is bad chemistry no matter how big the ligand
- Using modified standard deviations
 - *i.e.* not simply those from describing the distribution of the data from the crystal structures
 - Lower-bounds caps (every bond and angle checked)

Mogul-Based Ligand Validation

- Mogul plugin in Coot
 - Run mogul in "non-interactive" mode
 - graphical display of results
 - Update restraints (target and esds for bonds and angles)
 - CSD data not so great for plane, chiral and torsion restraints
 - remain unexploited for automated validation to date

Let's Rank Comp-ids

- By Average Mogul Z score
 - to identify the most distorted group types in the PDB

The Most Distorted Groups in the PDB

(with more than one structure)

Additional Criterion:

- Are the temperature factors of the ligand atoms drawn from the same distribution as the surrounding atoms?
 - Use Kolmogorov-Smirnov distribution test
 - Not build in to over-all score
 - But interesting outliers...

Combining Scores

 Ranking the density correlation, Mogul and bump scores gives us individual ranks:

Combined into total score:

•
$$S_T = R_{corr}^2 + R_{mogul}^2 + R_{bump}^2$$

- Coot Llgand Toolkit Score
- Which can then be ranked...

A Gallery of Outliers

Ligand Ranked #1 of 8470

(mol. no: 0) C2 /1/C/123 GOL occ: 1.00 bf: 27.06 ele: C pos: (20.98,-23.79,-4.40)

(mol. no: 0) C2 /1/C/123 GOL occ: 1.00 bf: 27.06 ele: C pos: (20.98,-23.79,-4.40)

Ligand Ranked #8470 of 8470

Successfully read coordinates file coot-refmac/3ilf-coot-0_refmac0.pdb. Molecule number 8 created.

Rank #8469 of 8470

Score Histograms

Density Correlation

Mogul z-score

Bumps/ligand

Histogram of Density Correlation

Histogram of Mogul z scores (worst) [Bonds & Angles]

Mogul Z score (worst)

Number of Bumps

Preliminary recommendatation...

Scoring Ligands: To Be Better Than The Median:

- 0 bumps
- Mogul z(worst) < 6.3
 - (note: query errors may be encoded in this value)
- Resolution Independence:
 - Density correlation > 0.9

Effective Resolution

Use standard deviations in the assessment of the data resolution

$$R_{eff} = \frac{R_{nom}}{\left(\frac{1}{N}\sum_{i}\sqrt{\frac{\varepsilon_{i} < F^{2} >}{\sigma_{Fi}^{2} + \varepsilon_{i} < F^{2} >}}\right)^{1/3}}$$
$$< F^{2} >= \frac{1}{n_{bin}}\sum_{bin}\frac{F_{j}^{2}}{\varepsilon_{j}}$$

Density Correlation Median vs. Resolution

- 0 X

Difficult Functional	Groups and Ions		
Group	Guideline	Correct Example	Incorrect Example
Acetylacetonato ion, coordi- nated to metal.	Use delocalised bond type for the carbon-oxygen and carbon-carbon bonds is the conjugated system.	H _a C d d Fe	H ₃ C CH ₃ CH ₃
Carbonyl.	Use a double C=O bond if the group is bridging metal atoms, but use a triple bond if it is bonded to only one metal atom.	O U II Fe ^{-C} -Fe Fe	0 U U Fe∽C∼Fe Fe
Carboxylate ion, uncoordi- nated or coordinated via only one of the oxygen atoms. Or thio equivalent.	Use one single C-O bond and one double C=O bond.	r° ° €°	
Carboxylate ion, bidentate to one or two metals. Or thio equivalent.	Use the delocalised bond type for both carbon-oxy- gen bonds.		
Nitro and nitrate.	Use two double N=O bonds (an uncoordinated nitrate ion would have two double bonds and one single).	H ₃ C-N ⁰	H3C-N ⁰ H3C-N ⁰
Perchlorate ion.	os three double bonds and one single bond.	0=9=0	

T

2D Ligand Builder

File Edit Calculate Draw Measures Validate HID About Extensions Lidia

- -

- Free sketch
- SBase search

Ligand Represenation

Bond orders (from dictionary restraints)

Ligand Environment Layout

2d Ligand pocket layout (ligplot, poseview)

Can we do better? - Interactivity?

Ligand Environment Layout

- Binding pocket residues
- Interactions
- Substitution contour
- Solvent accessibility halos
- Solvent exclusion by ligand

Solvent Exposure

• Identification of solvent accessible atoms

Ligand Enviroment Layout

- Considerations
 - 2D placement and distances should reflect 3D metrics (as much as possible)
 - H-bonded residues should be close the atoms to which they are bonded
 - Residues should not overlap the ligand
 - Residues should not overlap each other
 - *c.f.* Clark & Labute (2007)

Layout Energy Terms

 $E = \sum \sum w_{ij} (d_{ij}^2 - D_{ij}^2) +$ $\sum \sum \exp(-\frac{1}{2}d_{ij}^2) +$ $\sum (d_{ik}^2 - D_{ik}^2) +$ $\sum \sum \exp(-\frac{1}{2}d_{ik}^2)$

Residues match 3D Distances

Residues don't overlay each other

Residues are close to H-bonding ligand atoms

Residues don't overlap ligand

"Don't overlap the ligand"

Ligand Environment Layout

Initial residue placement

Ligand Environment Layout

Residue position minimisation

Determination of the Substitution Contour

How far can we go (in the direction of the hydrogens) before hitting atoms of the protein?

Substitution Contour: Extending along Hydrogens

Modelling Carbohydrates

- Validation,
- Model-building,
- Refinement

Problematic Glycoproteins

- Crispin, Stuart & Jones (2007)
 - NSB Correspondence
 - "one third of entries contain significant errors in carbohydrate stereochemistry..."
 - "carbohydrate-specific building and validation tools capable of guiding and construction of biologically relevant stereochemically accurate models should be integrated into popular crystallographic software. Rigorous treatment of the structural biology of glycosylation can only enhance the analysis of glycoproteins and our understanding of their function"
 - PDB curators concur

Carbohydrate Links

Thomas Lütteke (2007)

Validate the Tree: N-linked carbohydrates

Linking Oligsaccharides/Carbohydrates:

LO/Carb

Complex carbohydrate structure

- from a dictionary of standard links
- and monomers
- torsion-angle refinement

Refinement Trials (NAG-ASN example)

(mol. no: 0) O /1/B/418 HOH occ: 1.00 bf: 28.47 ele: O pos: (-14.17,-1.80,-9.48)

Coot Release 0.7.1

- Fixes to ligand fitting
- Fixes to Sequence View
- Retrive PDBe ligand description
 - (for new ligands)
- Improvements to Mogul Interface
- Lidia
 - Keyboard accelerators
 - target sildenafil in 20 seconds

Acknowledgements

- Kevin Cowtan
- Bernhard Lohkamp
- Libraries, Dictionaries
 - Alexei Vagin, Garib Murshudov
 - Eugene Krissinel
 - Greg Landrum
- Funding:
 - BBSRC & CCP4

Chiral Centre Inversion

Inverted chiral centre refinement pathology detection

Hydrogen tunnelling

Chemical Features

Uses built-in FeatureFactory

...and on the fly thumbnailing

2D Ligand Builder

File Edit Calculate Draw Measures Validate HID About Extensions Lidia

- -

- Free sketch
- SBase search

2D Sketcher

Structural Alerts

On the fly ROMol creation
Check vs. vector of SMARTS

- (from Biscu-it)
- And user-defined list

QED Score

Quantitative Evaluation of Drug-likeness

ARTICLES

PUBLISHED ONLINE: 24 JANUARY 2012 | DOI: 10.1038/NCHEM.1243

chemistry

nature

Quantifying the chemical beauty of drugs

G. Richard Bickerton¹, Gaia V. Paolini², Jérémy Besnard¹, Sorel Muresan³ and Andrew L. Hopkins^{1*}

Drug-likeness is a key consideration when selecting compounds during the early stages of drug discovery. However, evaluation of drug-likeness in absolute terms does not reflect adequately the whole spectrum of compound quality. More worryingly, widely used rules may inadvertently foster undesirable molecular property inflation as they permit the encroachment of rule-compliant compounds towards their boundaries. We propose a measure of drug-likeness based on the concept of desirability called the quantitative estimate of drug-likeness (OED). The empirical rationale of OED reflects the underlying distribution of molecular properties. QED is intuitive, transparent, straightforward to implement in many practical settings and allows compounds to be ranked by their relative merit. We extended the utility of QED by applying it to the problem of molecular target druggability assessment by prioritizing a large set of published bioactive compounds. The measure may also capture the abstract notion of aesthetics in medicinal chemistry.

"he concept of drug-likeness provides useful guidelines for early-stage drug discovery^{1,2}. Analysis of the observed distri-

bution of some key physicochemical properties of approved drugs, including molecular mass (M,), hydrophobicity and polarity, reveals that they occupy preferentially a relatively narrow range of possible values3. Compounds that fall within this range are described as 'drug-like'. This definition holds in the absence of any obvious structural similarity to an approved drug. It has been shown that the preferential selection of drug-like compounds increases the likelihood of surviving the well-documented high rates of attrition in drug discovery".

Drug-likeness can be rationalized by considering how simple physicochemical properties impact molecular behaviour in vivo. with particular respect to solubility, permeability, metabolic stability and transporter effects. Indeed, drug-likeness is often used as a proxy for oral bioavailability. However, drug-likeness provides a broad composite descriptor that implicitly captures several criteria,

Paradoxically, since the publication of the seminal paper by Lipinski et al.5 there appears to be a growing epidemic, which Hann has termed 'molecular obesity'8, among new pharmacological compounds (Supplementary Fig. S1). Compounds with higher relative M, and lipophilicity have a higher probability of attrition at each stage of clinical development^{4,9-11}. Thus, the inflation of physicochemical properties that increases the risks associated with dinical development may explain, in part, the decline in productivity of small-molecule drug discovery over the past two decades4. However, the mean molecular properties of new pharmacological compounds are still considered Lipinski compliant, even though their property distributions are far from historical norms.

Although the Ro5 is predictive of oral bioavailability, 16% of oral drugs violate at least one of the criteria and 6% fail two or more (although this does include natural products and substrates of transporters) (Supplementary Fig. S2a and Supplementary Table S1). High-profile drugs, such as atorvastatin (Lipitor) and montelukast

Figure 1 | Histograms of eight selected molecular properties for a set of 771 orally absorbed small molecule drugs. a-h, Molecular properties M_i (a), lipophilicity estimated by atom-based prediction of ALOGP (b), number of HBDs (c), number of HBAs (d), PSA (e), number of ROTBs (f), number of AROMs (g) and number of ALERTS (h). The Lipinski-compliant areas are shown in pale blue in (a), (b), (c) and (d). The solid blue lines describe the ADS functions (equation (2)) used to model the histograms. The parameters for each function are given in Supplementary Table S1.

design^{17,18}, prioritization of molecular targets, penetration of the asymmetric double sigmoidal (ADS) functions, which are also data²⁰. The concept was introduced originally by Harrington¹⁵ in the area of process engineering and further refined by Derringer molecular descriptor x: and Suich²¹. Desirability takes multiple numerical or categorical parameters measured on different scales and describes each by an individual desirability function. These are then integrated into a single dimensionless score. In the case of compounds, a series of desirability functions (d) are derived, each of which corresponds to a different molecular descriptor. Combining the individual desirability functions into the OFD is achieved by taking the according

central nervous system¹⁹ and estimating the reliability of screening shown in Fig. 1 over the same range. The general ADS function is shown in equation (2), where d(x) is the desirability function for

Bickerton et al (2012) Nature Chemistry

2D Sketcher

QED score

Silicos-it's Biscu-it™

Look up the function with PyModule_GetDict() and PyModule_GetItem()

Ligand Utils - CCP4 SRS

REFMAC Monomer Library chem_comp_tor

loop_								
_chem_co	omp_tor.co	mp_id						
_chem_co	omp_tor.id							
_chem_co	omp_tor.at	om_id_1						
_chem_co	omp_tor.at	om_id_2						
_chem_co	omp_tor.at	om_id_3						
_chem_co	omp_tor.at	om_id_4						
_chem_comp_tor.value_angle								
_chem_co	omp_tor.va	lue_ang	le_esd					
_chem_co	pmp_tor.pe	riod						
ADP	var 1	02A	PA	03A				

ADP	var_1	02A	PA	03A	PB	60.005	20.000	1
ADP	var_2	PA	03A	PB	01B	59.979	20.000	1
ADP	var_3	02A	PA	"05'"	"C5'"	-59.942	20.000	1
ADP	var_4	PA	"05'"	"C5'"	"C4'"	179.996	20.000	1
ADP	var_5	"05'"	"C5'"	"C4'"	"C3'"	176.858	20.000	3
ADP	var_6	"C5'"	"C4'"	"04'"	"C1'"	150.000	20.000	1
ADP	var_7	"C5'"	"C4'"	"C3'"	"C2'"	-150.000	20.000	3

Ligand Torsionable Angle Probability from CIF file

Conformer Generation

Non-Hydrogen Non-CONST Non-Ring

Orienting the Ligand

Orienting the Ligand

