## 3CSL

## From XDSwiki

HasA/R (PDB id 3CSL (http://www.pdb.org/pdb/explore /explore.do?structureId=3CSL) ) is a complex of a 22-stranded beta-barrel outer membrane protein (HAsR, 865 residues), its hemophore (HasA, 206 residues), and heme. The structure and its biological implications are described in "Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex" (Krieg, S., Huché, F., Diederichs, K., IzadiPruneyre, N., Lecroisey, A., Wandersman, C., Delepelaire, P., Welte, W. (2009), Proc. Nat. Acad. Sci. Vol. 106 pp. 1045-1050.)

3-wl SeMet-MAD data were collected at beamline X06SA of the SLS in November 2006 on a MarCCD detector. HasA/R crystallizes in spacegroup F222; cell parameters are $a=157 \AA, b=163 \AA, c=596 \AA$. There are 2 complexes per ASU Data to about $3.0 \AA$ could be collected from this crystal, but the anomalous data are useful to about $5 \AA$ only. The ordered part of HasR has residues 112-865 and harbours 9 SeMet residues. The ordered part of HasA has 173 residues, one of which is SeMet - but that is mostly disordered.

These MAD data, giving a structure with an average B of $100 \AA 2$, constitute a project that is challenging for humans, and currently too difficult for automatic methods of structure solution and model building. The deposited 3CSL structure was not obtained from these MAD data alone, but the model was actually refined against slightly better ( $2.7 \AA$ ) data collected on a native crystal at the ESRF.

## Contents

- 1 XDS data reduction of high-remote, peak and inflection
- 1.1 Peak
- 1.2 High-remote
- 1.3 Inflection
- 2 Scaling
- 3 Structure solution
- 3.1 SHELXC statistics
- 3.2 SHELXD statistics
- 3.3 SHELXE statistics
- 4 Availability of data
- 4.1 additional information for those who want to complete the structure


## XDS data reduction of high-remote, peak and

## inflection

The script generate_XDS.INP may be used to get a suitable first XDS.INP file for each of the three wavelengths. Unfortunately the beamline software did not put the correct X and Y position of the direct beam into the header. So you will have to find this yourself, using adxv or XDS-viewer. Or just use:

ORGX $=1536$ ORGY= 1520

The other thing that you might want to try yourself, or just fill in, is

```
VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=8000. 30000. ! often 8000 is ok
```

instead of the the default (7000.30000.). This results in a good mask for the beamstop shadow.

It turns out that the spot shapes are actually so irregular that XDS stops after the IDXREF step, with a long warning message. This is because it cannot index (within default error margins) enough reflections ( $50 \%$ is the cutoff). When that occurs, one simply continues with the step after IDXREF:

IJOBS= DEFPIX INTEGRATE CORRECT

Other than that, the three MAD wavelengths can be processed once with default parameters, as written into XDS.INP by generate_XDS.INP. This data reduction therefore proceeds in spacegroup P1, but the correct spacegroup (22) is identified by CORRECT.

Optimization: after this first data reduction pass, I use the "post-refined" geometric parameters, and the correct spacegroup (as given in CORRECT.LP, and written to GXPARM.XDS), for a second pass. Thus I need to

```
Imv GXPAM.XDS XPARM.XDS
```

and modify XDS.INP to read

```
IJOBS= INTEGRATE CORRECT
```

Afterwards, another xds_par run gives the final intensities. Repeating this optimization sometimes helps.

## Peak

360 frames ( $0.5^{\circ}$ oscillation) at the peak wavelength were collected after the high-remote data. They can be downloaded from here (ftp://turn5.biologie.uni-konstanz.de/pub/datasets/3csl-pk.tar) (1.9 Gb). This peak dataset is somewhat difficult to index; if the results are really bad (e.g. distance refining far away from 370 mm ) with the default 180 frames, then just try with 90 or 270 frames.

This is an excerpt from CORRECT.LP :


The verdict is clear: high mosaicity ( $>0.5^{\circ}$ ) bad ISa, anomalous correlation $>$ $30 \%$ only to about 5 A . The reason becomes clear if we load FRAME.cbf into XDS-Viewer, and zoom in:


It is clear that these split reflections provide bad data. Fortunately it seems that in other areas of the detector, the reflections look better.

We can use the "scalefactors" jiffy to investigate the scale factor, and the estimates for mosaicity and beam divergence of each frame:




Next, we can use xdsstat to get frame-wise statistics from XDS_ASCII.HKL:


This shows a "jump" around frame 225 which is always bad for experimental phasing!

| File Appearance Edit Utilities | Help |
| :--- | :--- | :--- |

mean Intensity and sigma, and Intensity/sigma

344.4,301.4

Tables in File


Around frame 225 the data are weakest, but they recover.
mean fraction of theoretical intensity, and correlation with standard profi

$278.0,5.939$
Tables in File


In particular the correlation against standard profiles (blue curve) is really low.

| File Appearance Edit Utilities | Help |
| :--- | :--- |

individual Rmeas of all frames

$277.0,0.082$
Tables in File


Graphs in Selected Table
reflections, nisfits, contributing_to_Rneas, unique\n
mean Intensity and sigma, and Intensity/sigmain
mean fraction of theoretical intensity, and correlation with standard pr individual Rneas of all framesin

R-factors peak around frame 225.


R d helps to quantify radiation damage. Unfortunately, for this dataset this " R -factor as a function of frame number difference" behaves wildly, so we cannot use 0-dose extrapolation, like we successfully did for 1 Y 13.

## High-remote

Due to a beamline problem, high-remote data collection stopped after 269 frames of $0.5^{\circ}$ (the final frame is already affected). After restart of the beamline, another 100 frames were collected but they later turned out to merge badly with the first 269 frames - a hint that the monochromator was still heating up, or similar. So the latter frames were left out. The 269 frames are here (ftp://turn5.biologie.uni-konstanz.de/pub/datasets/3csl-hrem.tar) (1.4 Gb).

From CORRECT.LP :


## Inflection

360 frames ( $0.5^{\circ}$ oscillation) at the inflection wavelength were collected after the peak data. They can be downloaded from here (ftp://turn5.biologie.uni-konstanz.de/pub/datasets/3csl-ip.tar) (1.8 Gb).

CORRECT .LP has:

| a b ISa |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| '6.514E+00 5.329E-04 16.97 |  |  |  |  |  |  |  |  |  |  |
| 16.514E+00 5.329E-04 16. |  |  |  |  |  |  |  |  |  |  |
| ' $1 .$. |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| '. ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |
| NOTE: Friedel pairs are treated as different reflections. |  |  |  |  |  |  |  |  |  |  |
| ' |  |  |  |  |  |  |  |  |  |  |
| 'SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION |  |  |  |  |  |  |  |  |  |  |
| RRESOLUTION | NUMBER | OF REFL | ECTIONS | COMPLETENESS | R-FACTOR | R-FACTOR | COMPARED | I/SIGMA | R-meas | Rmrgd |
| LIMIT | OBSERVED | UNIQUE | POSSIBLE | OF DATA | observed | expected |  |  |  | I |
| , |  |  |  |  |  |  |  |  |  |  |
| 1 8.28 | 26530 | 7039 | 7111 | 99.0\% | 4.4\% | 4.6\% | 26516 | 23.79 | 5.2\% | 3.1 |
| - 5.90 | 48700 | 12589 | 12598 | 99.9\% | 8.7\% | 8.5\% | 48700 | 14.00 | 10.2\% | 9.1 |
| : 4.83 | 62546 | 16177 | 16208 | 99.8\% | 12.0\% | 11.5\% | 62546 | 10.85 | 13.9\% | 14.' |
| : 4.18 | 72644 | 19076 | 19117 | 99.8\% | 13.6\% | 13.1\% | 72637 | 9.64 | 15.9\% | 17. |
| - 3.75 | 80829 | 21710 | 21740 | 99.9\% | 23.8\% | 24.0\% | 80829 | 5.92 | 27.9\% | 32.1 |
| 1 3.42 | 86652 | 23874 | 23917 | 99.8\% | 38.5\% | 39.9\% | 86652 | 3.71 | 45.2\% | 53.' |
| 1 3.17 | 73630 | 25264 | 26115 | 96.7\% | 64.4\% | 68.0\% | 71837 | 1.82 | 78.5\% | 109.' |
| - 2.96 | 48079 | 22582 | 28004 | 80.6\% | 99.2\% | 107.3\% | 43325 | 0.86 | 129.6\% | 186.1 |
| : 2.80 | 28417 | 17801 | 29828 | 59.7\% | 155.6\% | 168.5\% | 20099 | 0.43 | 214.2\% | 307.' |
| : total | 528027 | 166112 | 184638 | 90.0\% | 17.6\% | 17.8\% | 513141 | 5.98 | 20.9\% | 38.1 |
| ' |  |  |  |  |  |  |  |  |  |  |
| ' |  |  |  |  |  |  |  |  |  |  |
| 'NUMBER OF REFLECTIONS IN SELECTED SUBSET OF IMAGES 534898 |  |  |  |  |  |  |  |  |  |  |
| iNUMBER OF REJECTED MISFITS |  |  |  |  | 6486 |  |  |  |  | , |
| ''NuMBER OF S | SYSTEMATIC A | ABSENT R | EFLECTIONS |  | 0 |  |  |  |  | , |
| 'NUMBER OF A | ACCEPTED OBS | SERVATIO |  |  | 528412 |  |  |  |  |  |
| 'NUMBER OF U | UNIQUE ACCEP | TED REF | LECTIONS |  | 166224 |  |  |  |  | ' |

## Scaling

## Structure solution

We use hkl2map for solving the structure.

## SHELXC statistics



- <I/sig> vs. Resolution -

- Anomalous CC vs. Resolution -


- Self-Anomalous CC vs. Resolution -



## SHELXD statistics



- Histogram CCall -

- Site Occupancy vs. Peak Number -



## SHELXE statistics

Since there are 1852 residues in the ASU, the solvent content is about 72.5\%. The correct hand ("inverted") becomes immediately clear - it is superior in all respects than the "original" hand.


- Connectivity vs. Cycle -



Then we try to get a poly-ala backbone tracing, using the 16 Se sites found by SHELXD:

```
'shelxe.beta -a -q -m15 -s0.725 -b -h16 -n2 -i mad mad_fa
```

This does not yield a complete chain, but rather about $50 \%$ of it, and the CC is slightly less than $20 \%$, so that we cannot consider the structure as solved yet. However, the phases are good enough for finding 2 additional sites. We iterate this, and finally the Se sites all have a density of at least 20 sigma. The model from shelxe as well as the deposited structure are shown below:



No doubt that one can solve the structure from here, maybe after HA refinement with SHARP, and model building with buccanneer or Arp/wArp.

## Availability of data

There are files with amplitudes (3csl-pk-F.mtz, 3csl-rh-F.mtz, 3csl-ip-F.mtz) and intensities (3csl-pk-I.mtz, 3csl-rh-I.mtz, 3csl-ip-I.mtz) as well as mad_i.pdb and mad_i.phs (written by SHELXE) available from [1] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/3csl/) .

## additional information for those who want to complete the structure

These are the entire sequences of HasR and HasA - before solving the structure it was not known that the N -terminus of HasR was disordered.


Retrieved from "http://strucbio.biologie.uni-konstanz.de/xdswiki/index.php/3CSL"

- This page was last modified on 18 March 2011, at 21:08.

