2QVO.xds

From XDSwiki

(Redirected from 2QVO)
This is an example of S-SAD structure solution (PDB id 2QVO (http://www.rcsb.org /pdb/explore.do?structureId=2QVO)), a 95-residue protein used by James Tucker Swindell II to establish optimized procedures for data reduction. The data available to solve the structure are two runs of 360° collected at a wavelength of $1.9 \AA$.

Contents

- 1 XDS data reduction
- 1.1 dataset 1
- 1.2 dataset 2
- 2 SHELXC/D/E structure solution
- 3 Can we do better?
- 3.1 data reduction
- 3.2 structure solution
- 4 Exploring the limits
- 5 Availability

XDS data reduction

In the course of writing this up, it turned out that it was not necessary to scale the two datasets together, using XSCALE, because the structure can be solved from any of the two, separately. But, of course, structure solution would be easier when merging the data (try for yourself!).

dataset 1

Using "generate_XDS.INP ../../APS/22-ID/2qvo/ACA10_AF1382_1.0???" we obtain:

```
'Job= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT
'ORGX= 1996.00 ORGY= 2028.00 ! check these values with adxv !
IDETECTOR_DISTANCE= 125.000
'OSCILLATION_RANGE= 1.000
XX-RAY_WAVELENGTH= 1.90000
'NAME_TEMPLATE_OF_DATA_FRAMES=. ./. ./APS/22-ID/2qvo/ACA10_AF1382_1.0???
! REFERENCE_DATA_SET=xxx/XDS_ASCII.HKL ! e.g. to ensure consistent indexing
'DATA_RANGE=1 360
'SPOT_RANGE=1 180
!! BACKGROUND_RANGE=1 10 ! rather use defaults (first 5 degree of rotation)
|SPACE_GROUP_NUMBER=0 ! 0 if unknown
IUNIT_CELL_CONSTANTS= 708090909090 ! put correct values if known
'INCLUDE_RESOLUTION_RANGE=50 0 ! after CORRECT, insert high resol limit; re-run CORRECT
'
'FRIEDEL'S_LAW=FALSE ! This acts only on the CORRECT step
!! If the anom signal turns out to be, or is known to be, very low or absent,
!! use FRIEDEL'S_LAW=TRUE instead (or comment out the line); re-run CORRECT
!! remove the "!" in the following line:
!! STRICT_ABSORPTION_CORRECTION=TRUE
i! if the anomalous signal is strong: in that case, in CORRECT.LP the three
!! "CHI^2-VALUE OF FIT OF CORRECTION FACTORS" values are significantly> 1, e.g. 1.5
!!
! exclude (mask) untrusted areas of detector, e.g. beamstop shadow :
!! UNTRUSTED_RECTANGLE= 1800195021002150 ! x-min x-max y-min y-max ! repeat
!! UNTRUSTED_ELLIPSE \(=2034207018502240\) ! \(x\)-min \(x\)-max \(y\)-min \(y\)-max ! if needed
!
!! parameters with changes wrt default values:
'TRUSTED_REGION=0.00 1.2 ! partially use corners of detectors; 1.41421=full use
',VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=7000. 30000. ! often 8000 is ok
,MINIMUM_ZETA=0.05 ! integrate close to the Lorentz zone; 0.15 is default
'STRONG_PIXEL=6 COLSPOT: only use strong reflections (default is 3 )
MMINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT=3 ! default of 6 is sometimes too high
irefine(integrate)=CELL beam orientation ! axis distance
!
!! parameters specifically for this detector and beamline:
'DETECTOR= CCDCHESS MINIMUM_VALID_PIXEL_VALUE= 1 OVERLOAD= 65500
NX= 4096 NY= 4096 QX= . 0732420000 QY= . 0732420000 ! to make CORRECT happy if frames are unavailable
'DIRECTION_OF_DETECTOR_X-AXIS=1 00
IDIRECTION_OF_DETECTOR_Y-AXIS=0 10
'INCIDENT_BEAM_DIRECTION=0 01
RROTATION_AXIS=1 00 ! at e.g. SERCAT ID-22 this needs to be -1 00
'FRACTION_OF_POLARIZATION=0.98 ! better value is provided by beamline staff!
|POLARIZATION_PLANE_NORMAL=0 10
Ractizale
```

Now we run "xds_par". This runs to completion. We should at least inspect, using XDS-Viewer, the file FRAME.cbf since this shows us the last frame of the dataset, with boxes superimposed which correspond to the expected locations of reflections.

The automatic spacegroup determination (CORRECT.LP) comes up with

indicating at most tetragonal symmetry. Below this table, CORRECT calculates R-factors for each of the lattices whose metric symmetry is compatible with the cell of the crystal (marked by * in the table above):

SPACE-GROUP NUMBER	a	$\begin{gathered} \text { UNIT } \\ \mathrm{b} \end{gathered}$	$\begin{gathered} \mathrm{CELL} \mathrm{CO} \\ \mathrm{C} \end{gathered}$	CONSTANT alpha	beta g	amma	UNIQUE	Rmeas	COMPARED	LATTICECHARACTER
5	75.8	75.4	41.2	90.0	90.0	90.0	900	40.8	5882	20 mc
* 75	53.5	53.5	41.2	90.0	90.0	90.0	469	8.4	6313	21 tP
89	53.5	53.5	41.2	90.0	90.0	90.0	282	39.2	6500	21 tP
21	75.4	75.8	41.2	90.0	90.0	90.0	506	39.8	6276	23 oc
5	75.4	75.8	41.2	90.0	90.1	90.0	901	40.7	5881	25 mc
1	41.2	53.5	53.5	89.7	90.1	89.9	1699	8.2	5083	31 ap
16	41.2	53.5	53.5	90.0	90.0	90.0	521	39.8	6261	32 op
3	53.5	41.2	53.5	90.0	90.3	90.0	931	8.2	5851	35 mP
3	41.2	53.5	53.5	90.0	90.1	90.0	918	40.7	5864	33 mP
3	41.2	53.5	53.5	90.0	90.1	90.0	918	40.9	5864	34 mP
1	41.2	53.5	53.5	90.3	90.1	90.1	1699	8.2	5083	44 aP

thus suggesting spacegroup \#75 but we should know that this does not take screw axes into account. Therefore we use "pointless xdsin XDS_ASCII.HKL" and are told that this is actually spacegroup P4_2 (\# 77).
Alternatively, we could have inspected the list further down in CORRECT.LP:

REFLECTIONS OF TYPE H, 0, 0 0, $\mathrm{K}, 0$ 0, $0, \mathrm{~L}$ OR EXPECTED TO BE ABSENT (*)							
H	K	L	RESOLUTION	INTENSITY	SIGMA	INTENSITY/SIGMA	\#OBSERVED
0	0	1	41.248	$0.8487 E+01$	$0.1339 \mathrm{E}+01$	6.34	4
0	0	3	13.749	-0.7977E-03	$0.3786 \mathrm{E}+01$	0.00	4
\bigcirc	0	4	10.312	$0.1305 E+06$	$0.4660 \mathrm{E}+04$	27.99	1
0	0	5	8.250	$0.1318 \mathrm{E}+01$	$0.6316 \mathrm{E}+01$	0.21	4
\bigcirc	0	6	6.875	$0.2939 E+05$	$0.5284 \mathrm{E}+03$	55.61	4
\bigcirc	0	7	5.893	$0.5439 \mathrm{E}+01$	$0.9235 \mathrm{E}+01$	0.59	4
\bigcirc	0	8	5.156	$0.1298 \mathrm{E}+05$	$0.2371 E+03$	54.73	4
0	0	9	4.583	$0.3308 \mathrm{E}+02$	$0.1327 \mathrm{E}+02$	2.49	4
\bigcirc	0	10	4.125	$0.3809 \mathrm{E}+05$	$0.6867 \mathrm{E}+03$	55.47	4
\bigcirc	0	11	3.750	-0.1987E+02	$0.1767 \mathrm{E}+02$	-1.12	4
\bigcirc	0	12	3.437	$0.5539 \mathrm{E}+04$	$0.1097 \mathrm{E}+03$	50.48	4
0	0	13	3.173	$0.2144 \mathrm{E}+01$	0.2071E+02	0.10	4
\bigcirc	0	14	2.946	$0.2717 E+04$	0.6252E+02	43.46	4
\bigcirc	0	15	2.750	$0.1350 \mathrm{E}+02$	0.2482E+02	0.54	4
0	0	16	2.578	$0.1178 \mathrm{E}+04$	$0.4383 \mathrm{E}+02$	26.88	4
\bigcirc	0	17	2.426	-0.7420E+01	$0.3549 \mathrm{E}+02$	-0.21	4
\bigcirc	0	18	2.292	$0.4104 \mathrm{E}+03$	0.4681E+02	8.77	4

and realize that this also tells us that the spacegroup is 77 , not 75 .
After his comes the table that tells us the quality of our data:

So the anomalous signal goes to about $3.3 \AA$ (which is where 30% would be, in the "Anomal Corr" column), and the useful resolution goes to $2.16 \AA$, I'd say (pls note that this table treats Friedels separately; merging them increases I/sigma by another factor of 1.41).

For the sake of comparability, from now on we use the same axes (53.03 53.03 40.97) as the deposited PDB id 2QVO.

We could now modify XDS.INP to have

```
JOB=CORRECT ! not XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT
SPACE_GROUP_NUMBER= 77
UNIT_CELL_CONSTANTS= 
```

and run xds again, to obtain the final CORRECT.LP and XDS_ASCII.HKL with the correct spacegroup, but the statistics in 75 and 77 are the same, for all practical purposes (the 8 reflections known to be extinct do not make much difference).

Following this, we create XDSCONV.INP with the lines

```
SPACE_GROUP_NUMBER= 77 ! can leave out if CORRECT already ran in #77
UNIT_CELL_CONSTANTS= 53.03 53.03 40.97 90 90 90 ! same here
INPUT_FILE=XDS_ASCII.HKL
OUTPUT_FILE=temp.hkl CCP4
```

and run "xdsconv", and then

```
f2mtz HKLOUT temp.mtz<F2MTZ.INP
cad HKLIN1 temp.mtz HKLOUT output_file_name.mtz<<EOF
LABIN FILE 1 ALL
END
EOF
```

which gives us output_file_name.mtz, which we rename to xds-2ovo-1-F.mtz. Similarly, using

OUTPUT_FILE=temp.hkl CCP4_I
we end up with a MTZ file with intensities, which we rename to xds-2ovo-1-I.mtz.

dataset 2

This works exactly the same way as dataset 1 . The geometry refinement is surprisingly bad:

```
REFINED PARAMETERS: DISTANCE BEAM ORIENTATION CELL AXIS
USING 49218 INDEXED SPOTS
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.78
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.15
CRYSTAL MOSAICITY (DEGREES) 0.218
DIRECT BEAM COORDINATES (REC. ANGSTROEM) 0.002198-0.000174 0.526311
DETECTOR COORDINATES (PIXELS) OF DIRECT BEAM 1991.28 2027.42
DETECTOR ORIGIN (PIXELS) AT 1984.09 2027.99
CRYSTAL TO DETECTOR DISTANCE (mm) 126.03
LAB COORDINATES OF DETECTOR X-AXIS 1.000000 0.000000 0.000000
LAB COORDINATES OF DETECTOR Y-AXIS 0.000000 1.000000 0.000000
LAB COORDINATES OF ROTATION AXIS 0.999979 0.002580 -0.006016
COORDINATES OF UNIT CELL A-AXIS -31.728 -7.177 -42.595
COORDINATES OF UNIT CELL B-AXIS 40.575 13.173 -32.443
COORDINATES OF UNIT CELL C-AXIS 11.394 -39.576 -1.819
REC. CELL PARAMETERS 0.018658 0.018658 0.024258
UNIT CELL PARAMETERS 
E.S.D. OF CELL PARAMETERS 1.0E-02 1.0E-02 1.7E-02 0.0E+00 0.0E+00 0.0E+00
SPACE GROUP NUMBER 75
```

with its large "STANDARD DEVIATION OF SPOT POSITION (PIXELS)" which may indicate a slipping crystal, or changing cell parameters due to radiation damage. However no indication of any of this is found in the repeated refinements listed in INTEGRATE.LP, so we do not know what to attribute this problem to!

The main table in CORRECT.LP is

NOTE:	: Friedel pairs are treated as different reflections.								R-meas	
SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >=-3.0 AS FUNCTION OF RESOLUTION										
RESOLUTION	NUMBER	OF REF	ECTIONS	COMPLETENESS	R-FACTOR	R-FACTOR	COMPARED	I/SIGMA		
LIMIT	OBSERVED	UNIQUE	POSSIBLE	OF DATA	observed	expected				
6.06	3925	547	560	97.7\%	3.0\%	3.3\%	3922	56.13	3.3\%	1.4\%
4.31	7498	1000	1000	100.0\%	2.8%	3.4\%	7498	56.91	3.0\%	1.2\%
3.53	9407	1291	1291	100.0\%	3.4\%	3.5\%	9407	52.39	3.7\%	1.6\%
3.06	11005	1526	1526	100.0\%	4.1\%	3.9\%	11005	42.13	4.4\%	2.2\%
2.74	12569	1701	1701	100.0\%	5.7\%	5.7\%	12569	28.38	6.1\%	3.7\%
2.50	14020	1904	1904	100.0\%	9.0\%	9.9\%	14020	17.92	9.7\%	6.3\%
2.31	15101	2081	2081	100.0\%	17.0\%	19.0\%	15101	9.83	18.3\%	12.7\%
2.16	11693	2080	2202	94.5\%	39.4\%	40.8\%	11682	4.00	43.6\%	45.8\%
2.04	5152	1607	2345	68.5\%	85.6\%	93.5\%	4943	1.21	101.3\%	129.6\%
total	90370	13737	14610	94.0\%	4.2\%	4.5\%	90147	24.22	4.6\%	7.3\%
NUMBER OF R	REFLECTIONS	IN SEL	CTED SUBSET	OF IMAGES	92690					
NUMBER OF R	REJECTED MIS	FITS			2318					
NUMBER OF S	SYSTEMATIC A	ABSENT	EFLECTIONS		0					
NUMBER OF A	ACCEPTED OBS	ERVATI			90372					
NUMBER OF U	UNIQUE ACCEP	TED RE	LECTIONS		13738					

Dataset 2 is definitively better than dataset 1 . Note that the number of misfits is more than 2.5% whereas one should expect about 1% (with WFAC1=1).

SHELXC/D/E structure solution

This is done in a subdirectory of the XDS data reduction directory (of dataset "1" or "2"). Here, we use a script to generate XDSCONV.INP (I used MERGE=TRUE, sometimes the results are better that way), run xdsconv and SHELXC.

```
#!/bin/csh -f
cat > XDSCONV.INP <<end
INPUT_FILE=../XDS_ASCII.HKL
OUTPUT_FILE=temp.hkl SHELX
MERGE=TRUE
FRIEDEL'S_LAW=FALSE
end
xdsconv
shelxc j <<end
SAD temp.hkl
CELL 53.03 53.03 40.97 90 90 90
SPAG P42
MAXM 2
end
```

This writes j.hkl, j_fa.hkl and j_fa.ins. However, we overwrite j_fa.ins now (these lines are just the ones that hkl2map would write):

```
cat > j_fa.ins <<end
TITL j_fa.ins SAD in P42
CELL 0.98000 53.03 53.03 40.97 90.00 90.00 90.00
LATT -1
SYMM -Y, X, 1/2+Z
SYMM -X, -Y, Z
SYMM Y, -X, 1/2+Z
SFAC S
UNIT 128
SHEL 999 3.0
FIND 3
NTRY 100
MIND -1.0 2.2
ESEL 1.3
TEST 0 99
SEED 1
PATS
HKLF 3
END
end
```

and then
shelxd j_fa

This gives best CC All/Weak of 37.28 / 21.38 for dataset 1, and best CC All/Weak of 37.89 / 23.80 for dataset 2.

Next we run G. Sheldrick's beta-Version of SHELXE Version 2011/1:

```
shelxe.beta j j_fa -a -q -h -s0.55 -m20 -b
```

and the inverse hand:
shelxe.beta j j_fa-a -q -h -s0.55-m20-b -i

One of these (and it's impossible to predict which one!) solves the structure, the other gives bad statistics.
Some important lines in the output: for dataset 1, I get

${ }_{78}^{78}$ residues left after pruning, divided into chains as follows:									
cc for partial structure against native data $=36.54 \%$									
Estimated mean FOM and mapCC as a function of resolution $\mathrm{d} \quad$ inf $-4.49-3.55-3.10-2.81-2.61-2.45-2.32-2.22-2.13-2.03$									
<FOM> 0.763	0.784	0.743	0.682	0.632	0.620	0.621	0.600	0.519	0.416
<mapcc> 0.890	0.936	0.916	0.893	0.838	0.827	0.847	0.858	0.836	0.768
721	728	722	720	719	738	749	721	674	721
Estimated mean FOM $=0.639$ Pseudo-free CC $=65.26$ \%									
Density (in map sigma units) at input heavy atom sites									
Site $\begin{gathered}x \\ x\end{gathered}$									
1 0.0293 2 -0.1598	0.3789	879 0.37	3723 12.	12.7456	15.78				
	0.470	87	3704	9.4720	7.85				
$\begin{array}{ll}3 & -0.1413 \\ 4 & -0.2238 \\ 5\end{array}$	0.159	90.45	4220	9. 2176	9.96				
-0.2238 0.0387	0.4228	280.3	3134	1.6608	1.28				
		$z{ }^{\text {h }}$	(sig)	near old	near				
1 0.0293 2 -0.1564	0.3392	0.3148	19.1	1/0.02	2/10.34	4/11.	66 4/11	66 5/	. 88
	0.3740	0.3757	16.4	2/0.35	5/4.38	4/5.45	1/10.	3/12	
2 -0.1564 3 -0.2146	0.1625	0.4495	11.0	4/0.53	2/12.03	5/15.	1/16	924	. 39
$\begin{array}{lll}3 & -0.2146 \\ 4 & -0.1386 \\ 5 & 0\end{array}$	0.4748	0.3671	8.1	3/0. 29	5/2.67	2/5.45	1/11.6	1/11	
$\begin{array}{lll}4 & -0.1386 \\ 5 & -0.1829 & 0 \\ 0\end{array}$	0.4512	0.3605	5.9	3/2.47	4/2.67	2/4.38	1/12.8	1/13	

and for dataset 2,

clearly indicating that the structure can be solved with each of the two datasets individually.

Can we do better?

data reduction

The safest way to optimize the data reduction is to look at external quality indicators. Internal R-factors, and even the correlation coefficient of the anomalous signal are of comparatively little value. A readily available external quality indicator is CC All/CC Weak as obtained by SHELXD, and the percentage of successful trials.

I tried a number of possibilities:

- Optimization by "re-cycling" GXPARM.XDS to XPARM.XDS and re-running INTEGRATE, coupled with REFINE(INTEGRATE)= ! (empty list) and specifying BEAM_DIVERGENCE_E.S.D. and similar parameters as obtained from INTEGRATE.LP: this quite often helps to improve geometry a bit but had no clear effect here.
- STRICT_ABSORPTION_CORRECTION=TRUE - this is useful if the chi^2 -values of the three scaling steps in CORRECT.LP are 1.5 and higher which is not the case here. Consequently this also had no clear effect.
- increasing MAXIMUM_ERROR_OF_SPOT_POSITION from its default of 3 to (3 * STANDARD DEVIATION OF SPOT POSITION (PIXELS)) which would mean increasing to 5 here: no clear effect.
- increasing WFAC1 : this was suggested by the number of misfits which is clearly higher than the usual 1% of observations. WFAC1=1.5 has indeed a very positive effect on SHELXD: for dataset 1 , the best CC All/Weak becomes 44.93 / 22.82 (dataset 2: 48.11 / 27.78), and the number of successful trials goes from about 60% to 91% (dataset $2: 94 \%$). One should note that all internal quality indicators get worse when increasing WFAC1 - but the external ones got significant better! The number of misfits with WFAC1=1.5 dropped to 196 / 436 for datasets 1 and 2, respectively.
- MERGE=FALSE vs MERGE=TRUE in XDSCONV.INP: after finding out about WFAC1 I tried MERGE=FALSE (the default !) and it turned out to be a bit better - best CC All/Weak 48.66 / 28.05 for dataset 2. On the other hand, the number of successful trials went down to 77% (from 94\%). This result is somewhat difficult to interpret, but I like MERGE=TRUE better.

We may thus conclude that in this case the rejection of misfits beyond the target value of 1% reduces data quality significantly. In (other) desperate cases, if no successful trials are made by SHELXD it may be worth to always try WFAC1=1.5 provided the number of misfits is high.

We also learn that it's usually not going to help much to deviate from the defaults (MERGE=, MAXIMUM_ERROR_OF_SPOT_POSITION=, STRICT_ABSORPTION_CORRECTION=) unless there is a clear reason (high number of misfits) to!

structure solution

The resolution limit for SHELXD could be varied. For SHELXE, the solvent content could be varied, and the number of autobuilding cycles, and probably also the high resolution cutoff. Furthermore, it would be advantageous to "re-cycle" the file j.hat to j_fa.res, since the heavy-atom sites from SHELXE are more accurate than those from SHELXD, as the phases derived from the poly-Ala traces are quite good (compare the density columns of the two consecutive heavy-atom lists!).

With the optimally-reduced dataset 2, I get from SHELXE:

so the density is better, but not much. Furthermore, we note in passing that the number of anomalous scatterers (5) matches the sum of 4 Met and 1 Cys in the sequence.

Exploring the limits

With dataset 2, I tried to use the first 270 frames and could indeed solve the structure using the above SHELXC/D/E approach (with WFAC1=1.5) - 85 residues in a single chain, with "CC for partial structure against native data $=47.51$ \%". It should be mentioned that I also tried this in November 2009, and it didn't work with the version of XDS available then!

With 180 frames, it was possible to get a complete model by (twice) re-cycling the j.hat file to j_fa.res. This means that the structure can be automatically solved just from the first $\mathbf{1 8 0}$ frames of dataset 2!

Availability

- [1] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/2qvo/xds-2qvo-1-1_360-F.mtz) - amplitudes for frames 1-360 of dataset 1.
- [2] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/2qvo/xds-2qvo-1-1_360-I.mtz) - intensities for frames 1-360 of dataset 1.
- [3] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/2qvo/xds-2qvo-2-1_180-F.mtz) - amplitudes for frames 1-180 of dataset 2.
- [4] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/2qvo/xds-2qvo-2-1_180-I.mtz) - intensities for frames 1-180 of dataset 2.
- [5] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/2qvo/xds-2qvo-2-1_360-F.mtz) - amplitudes for frames 1-360 of dataset 2.
- [6] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/2qvo/xds-2qvo-2-1_360-I.mtz) - intensities for frames 1-360 of dataset 2.

Retrieved from "http://strucbio.biologie.uni-konstanz.de/xdswiki/index.php/2QVO.xds"

- This page was last modified on 14 March 2011, at 21:55.

