1 Y 13

From XDSwiki

The structure is deposited (http://www.rcsb.org/pdb/explore /explore.do? structureId=1Y13) in the PDB, solved with SAD and refined at a resolution of 2.2 A in spacegroup $\mathrm{P} 4(3) 2(1) 2$ (\#96). The data for this project were provided by Jürgen Bosch (SGPP) and are linked to the ACA 2011 workshop website (http://bl831.als.lbl.gov /example_data sets/ACA2011/DPWTP-website/index.html). There are two high-resolution ($2 \AA$) datasets E1 (wavelength $0.9794 \AA$) and E2 (@ $0.9174 \AA$) collected (with 0.25° increments) at an ALS beamline on June 27, 2004, and a weaker dataset collected earlier at a SSRL beamline. We will only use the former two datasets here.

Contents

- 1 Dataset E1
- 1.1 What's the problem?
- 1.2 Identifying a possible cause
- 1.3 A solution
- 2 Further analysis of datasets E1 and E2
- 3 Solving the structure
- 3.1 First try
- 3.2 Second try: correcting radiation damage by 0-dose extrapolation
- 4 Automatically building the main chain of 452 out of 519 residues
- 5 Could we do better?
- 6 Availability of data

Dataset E1

Use generate XDS.INP and run xds once. Based on R-factors in the resulting CORRECT.LP, and an inspection of BKGPIX.cbf, I modified XDS.INP to have

```
INCLUDE_RESOLUTION RANGE=40 2.1 ! too weak beyond 2.1 \AA
'VALUE_RAMNGE_FOR_TRUSTED_DETECTOR_PIXELS=8000. 30000. ! raised from 7000 30000 to mask beamstop
```

and ran xds again.

What's the problem?

This is the excerpt from CORRECT.LP :

So CORRECT chooses an orthorhombic spacegroup.
The file continues:

b ISa												
${ }^{\prime} 6.058 \mathrm{E}+00 \quad 3.027 \mathrm{E}-04 \quad 23.35$												
'...												
NOTE: Friedel pairs are treated as different reflections.												
'SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >=-3.0 AS FUNCTION OF RESOLUTION												
RESOLUTION	NUMBER	OF REF	ECTIONS	COMPLETENESS	R-FACTOR	R-FACTOR	COMPARED	I/SIGMA	R-meas	Rmrgd-F	Anomal	S
LIMIT	OBSERVED	UNIQUE	POSSIBLE	OF DATA	observed	expected					Corr	
6.23	17389	5807	6045	96.1\%	2.4%	2.8\%	17277	35.83	3.0\%	2.0\%	66\%	$1{ }^{1}$
4.43	32116	10536	10787	97.7\%	2.7\%	3.0\%	32057	33.78	3.3\%	2.4\%	55\%	$1{ }^{1}$
3.62	41900	13700	13961	98.1\%	3.4\%	3.4\%	41793	27.98	4.1\%	3.6\%	38\%	1
3.14	51146	16371	16513	99.1\%	5.4\%	5.3\%	50967	18.89	6.6\%	7.2\%	20\%	0
2.81	59159	18627	18675	99.7\%	12.7\%	13.2\%	58877	9.82	15.4\%	18.0\%	8\%	$0 \cdot$
2.56	65525	20596	20651	99.7\%	28.5\%	30.2\%	65130	5.19	34.5\%	40.4\%	3\%	0
2.37	71579	22491	22533	99.8\%	62.6\%	67.1\%	71068	2.60	75.6\%	88.8%	1\%	0
2.22	74065	23837	24094	98.9\%	97.9\%	97.0\%	73444	1.59	118.8\%	139.8\%	11\%	$0 \cdot$
2.09	65776	24379	25674	95.0\%	133.3\%	140.6\%	63647	0.90	166.4\%	216.0\%	1\%	0
total	478655	156344	158933	98.4\%	6.5\%	6.8\%	474260	10.65	7.9\%	22.5\%	16\%	0
'Number of reflections in Selected subset of images 492346												
NUMBER OF R	REJECTED MIS	SFITS			13342							'
'Number of S	SYSTEMATIC A	ABSENT	REfLECTIONS		0							'
'NUMBER OF A	ACCEPTED OBS	SERVATI	ONS		479004							'
inumber OF U	UNIQUE ACCEP	PTED RE	LECTIONS		157108							'

Some comments:

- the "STANDARD DEVIAT ION OF SPOT POSITION (PIXELS)" is significantly higher (1.01) than those reported for the 5°-batches in INT EGRATE.LP (about 0.6). This suggests that the geometry refinement has to deal with inconsistent data.
- CORRECT obviously indicates an orthorhombic spacegroup.
- the number of MISFITS is higher than 1%. From the first long table (fine-grained in resolution) table in CORRECT.LP we learn that the misfits are due to faint high-resolution ice rings - so this is a problem intrinsic to the data, and not to their mode of processing.

To my surprise, pointless does not agree with CORRECT's standpoint:

'Nelmt	Lklhd	Z-cc	CC	N	Rmeas		Symmetry \& operator	(in Lattice Cell)
1	0.959	9.91	0.99	65030	0.034		identity	
2	0.959	9.91	0.99	132222	0.035	***	2 -fold l (001)	\{-h, -k, +l\}
3	0.958	9.87	0.99	110073	0.044	***	2 -fold h (1000$)$	\{+h, -k, -l\}
4	0.942	9.55	0.96	132646	0.109	***	2-fold (1110$)$	\{ $+\mathrm{k}, \mathrm{h},-\mathrm{l}$ \}
5	0.958	9.87	0.99	111819	0.043	***	2-fold k (0100	\{-h, +k, -l\}
6	0.941	9.54	0.95	131842	0.109		2-fold (1-1 0)	\{-k,-h,-l\}
7	0.937	9.50	0.95	224393	0.107	***	4 -fold l (001)	\{-k, +h, +l\} $\{+\mathrm{k},-\mathrm{h},+\mathrm{l}\}$

and

Laue Group			Lklhd	NetZc Zc+		Zc-	CC	CC.	Rmeas	R-	Delta ReindexOperator
1> 1	P 4/m m m	***	1.000	9.73	9.73	0.00	0.97	0.00	0.07	0.00	0.2 [h, k, l]
:- 2	P m m m		0.000	0.35	9.88	9.53	0.99	0.95	0.04	0.11	0.0 [$\mathrm{h}, \mathrm{k}, \mathrm{l}$]
3	C m m m		0.000	-0.02	9.72	9.74	0.97	0.97	0.07	0.07	$0.2[h+k,-h+k, l]$
4	P 4/m		0.000	0.07	9.77	9.70	0.98	0.97	0.06	0.08	0.2 [$\mathrm{h}, \mathrm{k}, \mathrm{l}$]
' 5	P $12 / \mathrm{m} 1$		0.000	0.25	9.91	9.66	0.99	0.97	0.03	0.08	0.0 [-h,-l, -k]
- 6	P $12 / \mathrm{m} 1$		0.000	0.22	9.89	9.67	0.99	0.97	0.04	0.08	0.0 [h, k, l]
7	P $12 / \mathrm{m} 1$		0.000	0.21	9.88	9.67	0.99	0.97	0.04	0.08	0.0 [-k,-h,-l]
- 8	C $12 / m 1$		0.000	-0.01	9.72	9.73	0.97	0.97	0.07	0.07	0.2 [h-k, h+k, l]
- 9	C $12 / m 1$		0.000	-0.02	9.71	9.73	0.97	0.97	0.07	0.07	$0.2[h+k,-h+k, l]$
10	P -1		0.000	0.21	9.91	9.70	0.99	0.97	0.03	0.08	0.0 [$\mathrm{h}, \mathrm{k}, \mathrm{l}$]

and

Spacegroup	TotProb	SysAbsProb	Reindex	Conditions
<P 4121 2> (92)	0.823	0.823		00l: l=4n, h00: $\mathrm{h}=2 \mathrm{n}$ (zones 1,2)
<P 4321 2> (96)	0.823	0.823		00l: l=4n, h00: $h=2 n$ (zones 1,2)
<P 421 2> (90)	0.095	0.095		h00: $\mathrm{h}=2 \mathrm{n}$ (zone 2)
<P 4221 2> (94)	0.077	0.077		00l: l=2n, h00: $h=2 n$ (zones 1,2)

Thus suggesting \#92 or \#96 - the latter of which agrees with the PDB deposition. However, running CORRECT in \#96 and specifying 103103130909090 as cell parameters, we obtain:

```
REFINED PARAMETERS: DISTANCE BEAM ORIENTATION CELL AXIS
IUSING 220320 INDEXED SPOTS
'STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.17
ISTANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.14
I'CRYSTAL MOSAICITY (DEGREES) 0.191
,DIRECT BEAM COORDINATES (REC. ANGSTROEM) -0.004790 0.004009 1.021014
'DETECTOR COORDINATES (PIXELS) OF DIRECT BEAM 1027.19 1064.23
IDETECTOR ORIGIN (PIXELS) AT 
'CRYSTAL TO DETECTOR DISTANCE (mm) 209.52
,LAB COORDINATES OF DETECTOR X-AXIS 1.000000 0.000000 0.000000
ILAB COORDINATES OF DETECTOR Y-AXIS 0.000000 1.000000 0.000000
'LAB COORDINATES OF ROTATION AXIS 0.999996 0.000901 0.002534
'COORDINATES OF UNIT CELL A-AXIS 
ICOORDINATES OF UNIT CELL B-AXIS 3.794 87.060 -54.995
,COORDINATES OF UNIT CELL C-AXIS -128.212 18.926 21.115
'REC. CELL PARAMETERS 
IUNIT CELL PARAMETERS 103.045 103.045 131.310 90.000 90.000 90.000
IE.S.D. OF CELL PARAMETERS 2.1E-01 2.1E-01 2.1E-01 0.0E+00 0.0E+00 0.0E+00
ISPACE GROUP NUMBER 96
1
\begin{tabular}{ccc}
\(a\) & \(b\) & ISa \\
\(1.890 E+00\) & \(8.793 E-04\) & 12.01
\end{tabular}
I
    NOTE: Friedel pairs are treated as different reflections.
'SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RESOLUTION & NUMBER & OF REFL & CTIONS & COMPLETENESS & R-FACTOR & R-FACTOR & COMPARED & I/SIGMA & R-meas & Rmrgd-F & Anomal & S \\
\hline LIMIT & OBSERVED & UNIQUE & POSSIBLE & OF DATA & observed & expected & & & & & Corr & \\
\hline 6.23 & 16770 & 2983 & 3017 & 98.9\% & 5.2\% & 6.1\% & 16752 & 26.20 & 5.7\% & 2.6\% & 55\% & 1 \\
\hline 4.43 & 30598 & 5392 & 5393 & 100.0\% & 5.8\% & 6.2\% & 30596 & 25.25 & 6.3\% & 3.0\% & 50\% & \(1 '\) \\
\hline 3.62 & 39822 & 6992 & 6994 & 100.0\% & 6.9\% & 6.6\% & 39820 & 22.27 & 7.6\% & 4.0\% & 32\% & 01 \\
\hline 3.14 & 49620 & 8240 & 8242 & 100.0\% & 9.2\% & 8.7\% & 49619 & 17.14 & 10.1\% & 6.2\% & 19\% & 0 \\
\hline 2.81 & 59388 & 9379 & 9379 & 100.0\% & 17.7\% & 18.1\% & 59387 & 10.44 & 19.3\% & 12.3\% & 0\% & 01 \\
\hline 2.56 & 65652 & 10308 & 10310 & 100.0\% & 34.6\% & 39.1\% & 65652 & 6.08 & 37.7\% & 23.6\% & - 1\% & 01 \\
\hline 2.37 & 71744 & 11258 & 11259 & 100.0\% & 71.3\% & 83.8\% & 71744 & 3.23 & \(77.6 \%\) & 52.1\% & - \(2 \%\) & 01 \\
\hline 2.22 & 74888 & 12065 & 12082 & 99.9\% & 111.0\% & 116.9\% & 74888 & 1.98 & 121.2\% & 86.9\% & 2\% & 01 \\
\hline 2.09 & 65727 & 12386 & 12874 & 96.2\% & 151.3\% & 176.1\% & 65517 & 1.12 & 168.0\% & 148.4\% & -3\% & 01 \\
\hline total & 474209 & 79003 & 79550 & 99.3\% & 10.3\% & 11.0\% & 473975 & 9.44 & 11.3\% & 17.2\% & 13\% & 0 \\
\hline
\end{tabular}
'NUMBER OF REFLECTIONS IN SELECTED SUBSET OF IMAGES 492346
NUMBER OF REJECTED MISFITS 17898
'NUMBER OF SYSTEMATIC ABSENT REFLECTIONS 141
'NUMBER OF ACCEPTED OBSERVATIONS 474307
NUMBER OF UNIQUE ACCEPTED REFLECTIONS 79022
```

which is much worse than the spacegroup 19 statistics (compare the ISa values - they differ by a factor of 2 !) so there may be something wrong with some assumptions we were making ...

Identifying a possible cause

The easiest thing one can do is to inspect INTEGRATE.LP - this lists scale factor, beam divergence and mosaicity for every reflection. There's a jiffy called "scalefactors" which grep's the relevant lines from INT EGRATE.LP ("scalefactors > scales.log"). This shows the scale factor (column 3):

demonstrating that "something happens" between frame 372 and 373 (of course one has to look at the table to find the exact numbers).

It should be noted that any abrupt change in conditions during the experiment is going to spoil the resulting data in one way or another. This is most true for a SAD experiment which is supposed to give accurate values for the tiny differences in intensities between Friedel-related reflections.

A solution

At this point it is good to look at the data for experiment E2. Here, we find exactly the same problems of bad ISa and high "STANDARD DEVIATION OF SPOT POSITION (PIXELS)" when reducing frames 1-591 in one run of xds.

With this knowledge, we are lead, for E1, to reduce frames 1-372 and 373-592 separately, in spacegroup 96. For E2, we use frames 1-369 and 371-591, respectively. Frame E2-370 has a very high scale factor so we leave it out altogether.

This is also a good time to closely inspect the headers of the frames:

```
%%grep --binary-files=text DATE j1603b3PK_1_E1_37?.img
```

gives

and

thus proving that both datasets were interrupted for 20 minutes around frame 370 .
The really weird thing here is that both datasets appear to be collected at the same time, but at different wavelengths (E1 at $0.9794 \AA$, E2 at $0.9184 \AA$), and yet the individual parts merge as follows: using the following XSCALE.INP:

```
IUNIT CELL CONSTANTS=103.316 103.316 131.456 90.000 90.000 90.000
'SPAC\overline{E} GROU\P_NUMBER=96
'OUTPUT_FILE=temp .ahkl
IINPUT FILE=../e1 1-372/XDS ASCII.HKL
INPUT FILE=../e1 373-592/XDS ASCII.HKL
INNPUT_FILE=../e2_1-369/XDS_ASCII.HKL
INPUT_FILE=../e2_371-591/XDS_ASCII.HKL
```

and running xscale, we obtain in XSCALE.LP:

'DATA	SETS	NUMBER OF COMMON	CORRELATION	RATIO OF COMMON	B-FACTOR
\#i	\#j	REFLECTIONS	BETWEEN i,j	INTENSITIES (i/j)	BETWEEN i,j
11	2	15943	0.978	1.0002	0.0106
1 1	3	22366	1.000	1.0012	-0.0008
2	3	15801	0.977	0.9983	0.0557
11	4	15648	0.979	0.9988	0.0541
12	4	14862	0.999	1.0024	-0.0007
3	4	15524	0.978	0.9999	-0.0015

which means that e1_1-372 correlates well (1.000) with e2_1-369, and e1_373-59 well (0.999) with e2_371-591, but the crosswise correlations are consistently low (0.978, 0.977, $0.979,0.978)$. The adjustment to the error model proves this:

1 a	b	ISa	ISa0	INPUT DATA SET
16.112E+00	1.429E-03	10.70	22.37	../e1_1-372/XDS_ASCII.HKL
${ }^{1} 1.074 \mathrm{E}+01$	$1.825 \mathrm{E}-03$	7.14	23.79	../e1_373-592/XDS_ASCII.HKL
15.707E+00	1.621E-03	10.40	22.82	../e2_1-369/XDS_ASCII.HKL
18.547E+00	1.796E-03	8.07	24.17	../e2_371-591/XDS_ASCII.HKL

telling us that "if we merge these datasets together, their error estimates have to be increased a lot". However, if we switch to

```
'UNIT_CELL_CONSTANTS=103.316 103.316 1. 131.456 90.000 90.000 90.000
'SPACE_GROUP_NUMBER=96
OUTPUT FILE=firstparts.ahkl
'INPUT_\overline{FILE=../e1_1-372/XDS_ASCII.HKL}
IINPUT_FILE=../e2_1-369/XDS_ASCII.HKL
,OUTPUT_FILE=secondparts.ahkl
'INPUT_FILE=../e1_373-592/XDS_ASCII.HKL
IINPUT_FILE=../e2_371-591/XDS_ASCII.HKL
```

we obtain

proving that the second parts of datasets E1 and E2 should be treated separately from the first parts.

Upon inspection of the cell parameters, we find that the cell axes of the second "halfs" are shorter by a factor of 0.9908 when compared with the first parts. This suggests that they were collected at a longer wavelength! But then the wavelength values in the headers are most likely completely wrong: we can speculate that the two first parts were collected at the SeMet peak wavelength, and the two second parts at the inflection wavelength.

The almost-simultaneous DAT Es in the headers may be explained by an inverse-beam measuring strategy which alternatingly collects 4 frames in one orientation as E1, then rotates the spindle by 180° and collects 4 frames into E2. For some reason, the beamline software did not write the correct wavelength into the headers.

So this little detective work appears to tell us what happened in the morning of Sunday June 27, 2004 at ALS beamline 821 .

Further analysis of datasets E1 and E2

Here, we try to learn more about the constituents of "firstparts".
Running "xdsstat > XDSSTAT.LP" in the e1_1-372 and e2_1-369 directories, we obtain statistics output not available from CORRECT. We open XDSSTAT.LP with the CCP4 program "loggraph", and take a look at misfits.pck, rf.pck, and the other files produced by xdsstat, using VIEW or XDS-Viewer:
File Appearance Edit $\underline{\text { Utilities }}$ Help
reflections, misfits, contributing_to_Rmeas, unique

379.6,-73.9

Tables in File

Statistics of data set(s)

R_d as a function of frame number difference

Graphs in Selected Table

reflections, misfits, contributing_to_Rmeas, unique'n mean Intensity and sigma, and Intensity/sigmain mean fraction of theoretical intensity, and correlation with standard profilesin individual Rmeas of all framesin

Reflections and misfits, by frame - looks normal

Intensity and sigma by frame - looks normal

"partiality" and profile agreement, by frame - looks good but it's clear that the profiles at high frame number agree worse with the average profiles, possibly due to radiation damage

R_meas, by frame, clearly showing good R_meas in the middle of the dataset

R_d - an R-factor which directly depends on radiation damage. This is calculated as a function of frame number difference and the linear rise indicates significant radiation damage that should be correctable in XSCALE, using the CRYSTAL_NAME keyword.

misfits mapped on the detector, showing ice rings.

R_meas mapped on the detector, showing elevated R_meas at the location of the ice rings.

Solving the structure

Although we could now think of using these two files ("firstparts" and "secondparts" merged) and assume that they are peak and inflection wavelengths, it appears more reasonable to try and solve the structure with SAD - which means using "firstparts" only.

First try

Let's look at the XSCALE statistics for "firstparts":

NOTE:	Friedel pairs are treated as different reflections.								R-meas	Rmrgd-F	Anomal		
'SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION													
'RESOLUTION	NUMBER	OF REFL	ECTIONS	COMPLETENESS	R-FACTOR	R-FACTOR	COMPARED	I/SIGMA					S
LIMIT	OBSERVED	UNIQUE	POSSIBLE	OF DATA	observed	expected						Corr	
9.40	6122	844	883	95.6\%	2.9\%	3.5\%	6111	54.76		3.2\%	1.4\%	79\%	21
6.64	12037	1611	1621	99.4\%	2.9\%	3.6\%	12035	51.54	3.1\%	1.5\%	80\%	21	
5.43	15348	2065	2086	99.0\%	3.5\%	3.7\%	15347	47.79	3.7\%	1.7\%	78\%	21	
4.70	18714	2487	2498	99.6\%	3.0\%	3.7\%	18711	49.55	3.2\%	1.5\%	72\%	1	
4.20	21104	2797	2821	99.1\%	3.1\%	3.7\%	21102	47.24	3.3\%	1.7\%	72\%	$1{ }^{1}$	
3.84	23316	3095	3117	99.3\%	3.8\%	4.0\%	23313	42.74	4.1\%	2.1\%	65\%	1	
3.55	25693	3345	3366	99.4\%	4.4\%	4.5\%	25693	37.93	4.7\%	2.6\%	50\%	1,	
3.32	28017	3633	3653	99.5\%	5.2\%	5.2\%	28015	32.89	5.6\%	3.6\%	40\%	11	
3.13	30266	3842	3848	99.8\%	7.2\%	7.2\%	30264	25.87	7.7\%	4.8\%	36\%	1	
2.97	32595	4114	4118	99.9\%	10.4\%	10.4\%	32594	19.26	11.1\%	7.7\%	30\%	1,	
2.83	34384	4315	4320	99.9\%	14.3\%	14.8\%	34382	14.88	15.3\%	10.3\%	20\%	0'	
2.71	35654	4475	4478	99.9\%	18.3\%	19.1\%	35652	12.13	19.5\%	13.1\%	15\%	0	
2.61	37307	4705	4710	99.9\%	27.5\%	28.8\%	37304	8.44	29.4\%	19.8\%	11\%	0	
2.51	38997	4893	4896	99.9\%	35.5\%	38.0\%	38997	6.78	38.0\%	26.0\%	10\%	$0!$	
2.43	40036	5026	5027	100.0\%	51.3\%	55.1\%	40032	4.92	54.8\%	38.0\%	2\%	0	
2.35	39975	5180	5222	99.2\%	71.3\%	68.9\%	39967	3.78	76.4\%	52.7\%	21\%	0	
2.28	42041	5385	5423	99.3\%	93.7\%	93.1\%	42037	2.90	100.3\%	66.7\%	11\%	$0!$	
2.21	43012	5538	5541	99.9\%	85.7\%	88.3\%	43011	2.87	91.8\%	58.8\%	10\%	0	
2.16	42610	5701	5703	100.0\%	113.6\%	120.7\%	42607	2.13	122.0\%	85.4\%	4\%	0	
2.10	38996	5634	5912	95.3\%	146.1\%	153.9\%	38944	1.50	157.8\%	122.7\%	3\%	$0!$	
total	606224	78685	79243	99.3\%	6.7\%	7.2\%	606118	16.88	7.2\%	12.0\%	29\%	1	

The anomalous correlation is good at low resolution, though not outstanding. At high resolution it rises again but this is presumably due to the ice rings.

I like to use hkl2map which runs SHELXC, SHELXD and SHELXE from its GUI. Before doing so, we have to run XDSCONV with the following XDSCONV.INP:

INPUT FILE=firstparts.hkl
'OUTPUT̄_FILE=temp.hkl SHELX
First, the shelxc output which shows that these data are quite good:

And then we show the result of 100 trials at substructure solution of shelxd, trying to find 3 Se atoms at $30-3.3 \AA$ resolution (I also tried 3.0 3.1 3.2 3.4 $3.5 \AA \AA$ but $3.3 \AA$ was best).

This looks reasonable although the absolute value of CCall is so low that there is little hope that the structure can be solved with this amount of information. And indeed, SHELXE did not show a difference between the two hands (in fact we even know that the "original hand" is the correct one since the inverted had would correspond to spacegroup \#92!).

Second try: correcting radiation damage by 0-dose extrapolation

Since we noted significant radiation damage we could try to correct that. All we have to do is ask XSCALE to do zero-dose extrapolation:

```
'UNIT_CELL_CONSTANTS=103.316 103.316 131.456 90.000 90.000 90.000
SPACE_GROUP_NUMBER=96
OUTPUT FILE=temp.ahkl
INPUT_F
,CRYSTĀL NAME=a
'INPUT FILE=../e2 1-369/XDS ASCII.HKL
CRYSTĀL_NAME=a
```

As a result we obtain:

```
*********************************************************************************
    RESULTS FROM ZERO-DOSE EXTRAPOLATION OF REFLECTION INTENSITIES
    for reference on this subject see:
K. Diederichs, S. McSweeney & R.B.G. Ravelli, Acta Cryst. D59, 903-909(2003).
"Zero-dose extrapolation as part of macromolecular synchrotron data reduction"
**********************************************************************************
Radiation damage can lead to localized modifications of the structure.
To correct for this effect, XSCALE modifies the intensity measurements
I(h,i) by individual correction factors,
\[
\exp \{-b(h) * \operatorname{dose}(h, i)\}
\]
where \(h, i\) denotes the \(i-t h\) observation with unique reflection indices \(h\), and dose(h,i) the X-ray dose accumulated by the crystal when the reflection was recorded. Assuming a constant dose for each image
(dose_rate), the accumulated dose when recording image_number(i), on
which I(h,i) was observed, is then
dose(h,i) = starting_dose + dose_rate * (image_number(i)-first_image)
The decay factor b(h) is determined from the assumption that symmetry
related reflections in a data set taken from the same crystal should
have the same intensity after correction. Moreover, b(h) is assumed to
be the same for Friedel-pairs and independent of the X-ray wavelength.
To avoid overfitting the data, XSCALE starts with the hypothesis that
b(h)=0 and rejects this assumption if its probability is below 10.0%.
CORRELATION OF COMMON DECAY-FACTORS BETWEEN INPUT DATA SETS
First INPUT_FILE= ../e2_1-369/XDS_ASCII.HKL
        CRYSTAL_NAME= a
Second INPUT_FILE= ../e1_1-372/XDS_ASCII.HKL
        CRYSTAL_NAME= a
\begin{tabular}{ccc} 
RESOLUTION & NUMBER & CORRELATION \\
LIMIT & OF PAIRS & FACTOR
\end{tabular}
\(9.40 \quad 210 \quad 0.95\)
\begin{tabular}{lll}
6.64 & 441 & 0.955 \\
5.43 & 587 & 0.940
\end{tabular}
\begin{tabular}{lll}
5.43 & 587 & 0.940 \\
4.70 & 692 & 0.969
\end{tabular}
\begin{tabular}{lll}
4.70 & 692 & 0.969
\end{tabular}
\(4.20 \quad 750 \quad 0.949\)
\begin{tabular}{lll}
3.84 & 836 & 0.920 \\
3.55 & 809 & 0.942
\end{tabular}
\begin{tabular}{lll}
3.55 & 809 & 0.942 \\
3.32 & 775 & 0.925
\end{tabular}
\begin{tabular}{lll}
3.32 & 775 & 0.925 \\
3.13 & 663 & 0.888
\end{tabular}
\begin{tabular}{lll}
3.13 & 663 & 0.888 \\
2.97 & 557 & 0.837
\end{tabular}
\begin{tabular}{lll}
2.97 & 557 & 0.837 \\
2.83 & 375 & 0.681
\end{tabular}
\begin{tabular}{lll}
2.71 & 302 & 0.812
\end{tabular}
\begin{tabular}{lll}
2.61 & 212 & 0.625 \\
2.51 & 163 & 0.508
\end{tabular}
\begin{tabular}{lrr}
2.51 & 163 & 0.508 \\
2.43 & 95 & 0.291
\end{tabular}
\begin{tabular}{lll}
2.35 & 139 & 0.722
\end{tabular}
\begin{tabular}{lll}
2.28 & 110 & 0.688
\end{tabular}
                                0.688
                                0.734
                                0.561
\begin{tabular}{lll}
2.28 & 91 & 0.734 \\
2.16 & 88 & 0.561 \\
2.10 & 54 & 0.126
\end{tabular}
\begin{tabular}{lll} 
total & 7949 & 0.788
\end{tabular}
X-RAY DOSE PARAMETERS USED FOR EACH INPUT DATA SET
```

CRYSTAL NAME= a
STARTING DOSE
DOSE_RATE NAME OF INPUT FILE
initial refined
initial $\underset{\text { refined }}{ }$
$0.000 \mathrm{E}+00 \quad 8.557 \mathrm{E}+00 \quad 1.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}+00 \quad . . / \mathrm{e} 1 _1-372 / \mathrm{XDS}$ _ASCII. HKL
$0.000 \mathrm{E}+00 \quad 0.000 \mathrm{E}+00 \quad 1.000 \mathrm{E}+00 \quad 1.024 \mathrm{E}+00 \quad . . / \mathrm{e}^{-} 1-369 / \mathrm{XDS}$ _ASCII. HKL

STATISTICS OF 0-DOSE CORRECTED DATA FROM EACH CRYSTAL

NUNIQUE = Number of unique reflections with enough symmetryrelated observations to determine a decay factor $b(h)$

We not that the "CORRELATION OF COMMON DECAY-FACT ORS BETWEEN INPUT DATA SETS" are really high which confirms the hypothesis that this is a valid procedure to perform.

Comparis on of the last table with that of the previous paragraph, i.e. without zero-dose extrapolation, shows that the I/sigma, the anomalous correlation coefficients and the SigAno are significantly higher. Does this translate into better structure solution? It does:

Automatically building the main chain of 452 out of 519 residues

Based on the sites obtained by SHELXD, we run

```
shelxe.beta -a -q -h -b -s0.585 -m40 raddam raddam_fa
```

This already builds a significant number of residues, but also gives an improved list of heavy atom sites - there are actually 6 sites instead of the 5 that SHELXD wrote out (yes, we had asked SHELXD for 3 sites since there are 3 Met residues, but SHELXD as always was smarter than we are). We "mv raddam.hat raddam_fa.res" for another run of SHELXE:

```
'shelxe.beta -a -q -h6 -b -s0.585 -m40 -n3 raddam raddam_fa
```

and get

```
4 5 2 \text { residues left after pruning, divided into chains as follows:}
A: 15 B: 5 C: 22 D: 22 E: 27 F: 62 G: 263 H: 36
CC for partial structure against native data = 39.83%
Global autotracing cycle 4
<wt> = 0.300, Contrast = 0.447, Connect. = 0.705 for dens.mod. cycle 1
<wt> = 0.300, Contrast = 0.660, Connect. = 0.781 for dens.mod. cycle 2
<wt> = 0.300, Contrast = 0.723, Connect. = 0.801 for dens.mod. cycle 3
<wt> = 0.300, Contrast = 0.762, Connect. = 0.807 for dens.mod. cycle 4
Pseudo-free CC = 64.88 %
<wt> = 0.300, Contrast = 0.785, Connect. = 0.810 for dens.mod. cycle 5
<wt> = 0.300, Contrast = 0.806, Connect. = 0.813 for dens.mod. cycle 6
<wt> = 0.300, Contrast = 0.820, Connect. = 0.815 for dens.mod. cycle 7
<wt> = 0.300, Contrast = 0.831, Connect. = 0.817 for dens.mod. cycle 8
<wt> = 0.300, Contrast = 0.839, Connect. = 0.819 for dens.mod. cycle 9
Pseudo-free CC = 69.74 %
<wt> = 0.300, Contrast = 0.845, Connect. = 0.820 for dens.mod. cycle 10
<wt> = 0.300, Contrast = 0.849, Connect. = 0.821 for dens.mod. cycle 11
<wt> = 0.300, Contrast = 0.851, Connect. = 0.822 for dens.mod. cycle 12
<wt> = 0.300, Contrast = 0.853, Connect. = 0.823 for dens.mod. cycle 13
<wt> = 0.300, Contrast = 0.854, Connect. = 0.823 for dens.mod. cycle 14
Pseudo-free CC = 70.80 %
<wt> = 0.300, Contrast = 0.854, Connect. = 0.824 for dens.mod. cycle 15
<wt> = 0.300, Contrast = 0.855, Connect. = 0.824 for dens.mod. cycle 16
<wt> = 0.300, Contrast = 0.855, Connect. = 0.824 for dens.mod. cycle 17
<wt> = 0.300, Contrast = 0.854, Connect. = 0.824 for dens.mod. cycle 18
<wt> = 0.300, Contrast = 0.854, Connect. = 0.824 for dens.mod. cycle 19
Pseudo-free CC = 71.03 %
<wt> = 0.300, Contrast = 0.854, Connect. = 0.824 for dens.mod. cycle 20
Estimated mean FOM and mapCC as a function of resolution
d inf - 4.62-3.64-3.17-2.88-2.67-2.51-2.38-2.27-2.18-2.11
```



```
N N
Estimated mean FOM = 0.674 Pseudo-free CC = 71.18 %
Density (in map sigma units) at input heavy atom sites
\begin{tabular}{cccccc} 
Site & x & y & z & occ*Z & density \\
1 & 0.2276 & 0.7578 & 0.1189 & 34.0000 & 29.98 \\
2 & 0.1568 & 0.6345 & 0.3049 & 32.2898 & 30.44 \\
3 & 0.1767 & 0.5344 & 0.2160 & 32.2388 & 29.67 \\
4 & 0.3059 & 0.4535 & 0.1297 & 26.0746 & 23.51 \\
5 & 0.0280 & 0.8243 & 0.1410 & 22.7324 & 21.02 \\
6 & 0.0383 & 0.9748 & 0.0492 & 21.5050 & 21.18
\end{tabular}
Site x y z h(sig) near old near new
    1 0.1569 0.6345 0.3048
    0.2278}00.7578 0.1188 30.0 1/0.02 1/19.52 6/21.97 7/22.48 9/25.02
    0.1767 0.5345
    0.3060 0.4536 0.1292 23.5 4/0.07 3/19.45 9/21.16 8/26.49 5/26.83
    0.0382 0.9748}00.0490 21.2 6/0.02 8/2.63 8/15.66 5/15.88 6/19.80
```



```
    0.1854 0.9571 0.1787 -5.0 5/21.86 6/21.87 1/22.13 2/22.48 8/22.57
    0.0427 0.9993 0.0530 -5.0 6/2.62 5/2.63 8/15.31 5/15.66 6/21.59
    0.1787 0.5611 0.2228 -4.7 3/2.91 3/2.90 1/13.36 4/21.16 2/25.02
```

At this point the structure is obviously solved, and we could use buccanneer or Arp/wArp to add side chains and the rest of the model. 3-fold NCS surely helps!

Could we do better?

Yes, of course (as always). I can think of four things to try:

- an optimization round of running xds for the two datasets
- using a negative offset for ST ARTING_DOSE in XSCALE.INP, as documented in the XSCALE wiki article.
- use MERGE=TRUE in XDSCONV.INP. I tried it and this gives 20 solutions with CCall+CCweak > 25 out of 1000 trials, whereas MERGE=FALSE (the default) gives only 4 solutions!
- adding the "secondparts" data assuming this is a longer wavelength

But this time we learn that one has to take special care of the data in particular when they were measured by someone else who does not tell us everything we need to know. Second, zero-dose extrapolation made the day.

Availability of data

The XDS/XSCALE - produced data are available at 1y13-raddam-F.mtz (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/1y13xds-1y13-raddam-F.mtz) (amplitudes) and 1y13-raddam-I.mtz (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared /1y13xds-1y13-raddam-I.mtz) (intensities). In addition I provide [1] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/e1_1-372_XDS_ASCII.HKL.bz2) and [2]
(ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/e2_1-369_XDS_ASCII.HKL.bz2) to enable investigating based on the original XDS data.

Retrieved from "http://strucbio.biologie.uni-konstanz.de/xdswiki/index.php/1Y13"

- This page was last modified on 17 March 2011, at 21:18.

