1Y13

From XDSwiki

The structure is deposited (http://www.rcsb.org/pdb/explore

/explore.do?structureId=1Y13) in the PDB, solved with SAD and refined at a resolution of 2.2 A in spacegroup P4(3)2(1)2 (#96). The data for this project were provided by Jürgen Bosch (SGPP) and are linked to the ACA 2011 workshop website (http://bl831.als.lbl.gov /example_data_sets/ACA2011/DPWTP-website/index.html). There are two high-resolution (2 Å) datasets E1 (wavelength 0.9794Å) and E2 (@ 0.9174Å) collected (with 0.25° increments) at an ALS beamline on June 27, 2004, and a weaker dataset collected earlier at a SSRL beamline. We will only use the former two datasets here.

Contents

1 Dataset E1

- 1.1 What's the problem?
- 1.2 Identifying a possible cause
- 1.3 A solution
- 2 Further analysis of datasets E1 and E2
- 3 Solving the structure
 - 3.1 First try
 - 3.2 Second try: correcting radiation damage by 0-dose extrapolation
- 4 Automatically building the main chain of 452 out of 519 residues
- 5 Could we do better?
- 6 Availability of data

Dataset E1

Use generate_XDS.INP and run xds once. Based on R-factors in the resulting CORRECT.LP, and an inspection of BKGPIX.cbf, I modified XDS.INP to have

INCLUDE_RESOLUTION_RANGE=40 2.1 ! too weak beyond 2.1 Å VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=8000. 30000. ! raised from 7000 30000 to mask beamstop

and ran xds again.

What's the problem?

This is the excerpt from CORRECT.LP :

SPACE - GROUP		UNIT	CELL	CONSTANT	S		UNIQUE	Rmeas	COMPA	RED LAT	TICE-				
NUMBER	а	b	С	alpha	beta o	gamma				CHAR	ACTER				Ì
5	145.8	145.7	131.	4 90.0	90.0	90.0	9735	24.5	231	76 10	mC				
75	103.1	103.1	131.	4 90.0 4 90.0	90.0	90.0 90.0	5262 2011	23.4	276	49 11 00 11	tP +P				- i
21	145.7	145.8	131.	4 90.0	90.0	90.0	5270	22.0	276	41 13	oC				- 1
5	145.7	145.8	131.	4 90.0	90.0	90.0	9681	24.2	232	30 14	mC				;
· 1 · * 16	102.9	103.2	131.	4 90.0	90.0	89.9	18040	6.9	148	71 31 43 32	aP				
3	102.9	102.9	131.	4 90.0	90.0	90.0	10536	9.5	223	75 35	mP				÷
3	102.9	103.2	131.	4 90.0	90.0	90.0	10496	8.3	224	15 33	mP				- İ
; 3 • 1	102.9	131.4	103.	2 90.0 4 90.0	90.1	90.0	9770 18040	7.3	231	41 34 71 44	mP aP				
¦ 1	102.5	105.2	151.	- 50.0	50.0	50.1	10040	0.5	140	/1 ++	ui				
															÷
REETNED PAR	AMETERS	DTST	TANCE	REAM ORT	FNTAT	TON CEL	ι ΔΧΤς								Ì
USING 2194	12 INDEX	ED SPC	TS				2 ///15								- 1
STANDARD DE	VIATION (OF SPC)T	POSITION	I (PIXE	ELS)	1.01								
CRYSTAL MOS	VIALION (ATCTTY (I	OF SPI DEGREE	INDLE S)	PUSITION 0 191	I (DEG	REES)	0.11								1
DIRECT BEAM	COORDIN	ATES ((REC.	ANGSTROE	EM) - (9.00478	9 0.0037	58 1.0	21015						Ì
DETECTOR CO	ORDINATES	S (PIX	(ELS)	OF DIREC	T BEAN	4 10	27.25 1	064.20							- 1
DETECTOR OR.	IGIN (PI) DETECTOR	XELS) DTSTA	AI ANCE (mm)	209	38	36.84 1	050.68							
LAB COORDIN	ATES OF I	DETECT	TOR X-	AXIS 1.	000000		0000 0.0	00000							1
LAB COORDIN	ATES OF I	DETECT	TOR Y-	AXIS 0.	000000	9 1.00	0000 0.0	00000							- i
COORDINATES	OF UNTT	CELL	LUN AX	15 0.99 S 21.	99997	52.89	2/ 0.002	187 37							- 1
COORDINATES	OF UNIT	CELL	B-AXI	S 3.	771	87.15	8 -54.9	92							
COORDINATES	OF UNIT	CELL	C-AXI	S -128.	130	18.91	4 21.1	91	0 00	000					
INTT CELL P	ARAMETER: ARAMETER	50. 51	00973	1 0.009 6 103	125 (9.00/62 131 24	0 90.000	90.00	0 90. 0 90	000					÷
E.S.D. OF C	ELL PARA	METERS	5 1.3	E-01 8.6	6E-02 9	9.3E-02	0.0E+00	0.0E+00	0.0E+	00					- i
SPACE GROUP	NUMBER	16	5												
															'
So CORR	ECT cl	hoos	ses a	n orth	orho	ombic	space	arour).						
							- I	9 F							
The file of	continu	ies:													
1															1
i a	b		ISa												- i
6.058E+00	3.027E-04	4 23	3.35												- 1
i 1															
1															1
NOTE:	Fr:	iedel	pairs	are tre	eated a	as diff	erent ref	lection	IS.						- i
SUBSET OF T	NTENSITY	DATA	WTTH	STGNAL /N	IOTSE :	>= -3.0	AS FUNCT	TON OF	RESOLU	TTON					- 1
RESOLUTION	NUMBI	ER OF	REFLE	CTIONS	COM	PLETENE	SS R-FACT	OR R-F	ACTOR	COMPARED	I/SIGMA	R-meas	Rmrgd-F	Anomal	Si
LIMIT	OBSERVE	D UNI	[QUE	POSSIBLE	E (OF DATA	observ	ed exp	ected					Corr	
6.23	1738	9 5	5807	604	5	96.1%	2.	4%	2.8%	17277	35.83	3.0%	2.0%	66%	1
4.43	32110	6 10	9536	10787	,	97.7%	2.	7%	3.0%	32057	33.78	3.3%	2.4%	55%	1
3.62	4190	0 13	3700	13961	L	98.1%	3.	4%	3.4%	41793	27.98	4.1%	3.6%	38%	1¦
3.14	51140	6 16 0 19	03/1 8627	1651:	5	99.1% 00 7%	5.	4% 7%	5.3%	50967	18.89	0.6% 15.4%	/.2% 18 A%	20%	01
2.56	6552	5 20	9596	20651		99.7%	28.	5%	30.2%	65130	5.19	34.5%	40.4%	3%	0
2.37	71579	9 22	2491	22533	3	99.8%	62.	6%	67.1%	71068	2.60	75.6%	88.8%	1%	0
2.22	7406	5 23	3837	24094	ļ	98.9%	97.	9% 7° 1	97.0%	73444	1.59	118.8%	139.8%	11%	0
i ∠.⊍9 ! total	47865	5 156	5344	158933	+ }	93.0% 98.4%	153. 6.	ر مر 5%	.⇔0.0∛ 6.8%	474260	10.65	100.4% 7.9%	210.⊍% 22.5%	18 16%	0
1	., 505.						5.				10.05				Ĩ
						TMACEC	402240								- 1
NUMBER OF R	EJECTED !	NS IN MISFTT	SELEC	IED SOBS	DEI UF	IMAGES	492346 13342								-
NUMBER OF S	YSTEMATI	C ABSE	ENT RE	FLECTION	IS		0								
NUMBER OF A	CCEPTED	OBSERV	ATION	S			479004								i
NUMBER OF U	NIQUE AC	CEPTED) REFL	ECTIONS			157108								i

Some comments:

- the "STANDARD DEVIATION OF SPOT POSITION (PIXELS)" is significantly higher (1.01) than those reported for the 5°-batches in INTEGRATE.LP (about 0.6). This suggests that the geometry refinement has to deal with inconsistent data.
 COPPECT obviously indicates on orthorhombic spacegroup.
- CORRECT obviously indicates an orthorhombic spacegroup.

the number of MISFITS is higher than 1%. From the first long table (fine-grained in resolution) table in CORRECT.LP we learn that the misfits are due to faint high-resolution ice rings - so this is a problem intrinsic to the data, and not to their mode of processing.

To my surprise, pointless does not agree with CORRECT's standpoint:

Score	s for ea	ch sym	metry e	lement				
Nelmt	Lklhd	Z-cc	CC	Ν	Rmeas	Symmetry & operator	(in Lattice Cell)	
1 2 3 4 5 6 7	0.959 0.959 0.958 0.942 0.958 0.941 0.937	9.91 9.91 9.87 9.55 9.87 9.54 9.50	0.99 0.99 0.99 0.96 0.99 0.95 0.95	65030 132222 110073 132646 111819 131842 224393	0.034 0.035 0.044 0.109 0.043 0.109 0.107	identity *** 2-fold l (0 0 1) *** 2-fold h (1 0 0) *** 2-fold (1 1 0) *** 2-fold k (0 1 0) *** 2-fold (1-1 0) *** 4-fold l (0 0 1)	<pre>{-h,-k,+l} {+h,-k,-l} {+k,+h,-l} {-h,+k,-l} {-h,+k,-l} {-k,-h,-l} {-k,+h,+l} {+k,-h,+l}</pre>	

and

	Laue Group	Lklhd	NetZ	c Zc+	Zc-	СС	CC-	Rmeas	R-	Delta ReindexOperator
⊳]	. P4/mmm ***	1.000	9.73	9.73	0.00	0.97	0.00	0.07	0.00	0.2 [h,k,l]
- 2	? Pmmm	0.000	0.35	9.88	9.53	0.99	0.95	0.04	0.11	0.0 [h,k,l]
1 3	3 Cmmm	0.000	-0.02	9.72	9.74	0.97	0.97	0.07	0.07	0.2 [h+k,-h+k,l]
i 4	P4/m	0.000	0.07	9.77	9.70	0.98	0.97	0.06	0.08	0.2 [h,k,l]
1 5	6 P 1 2/m 1	0.000	0.25	9.91	9.66	0.99	0.97	0.03	0.08	0.0 [-h,-l,-k]
! 6	6 P 1 2/m 1	0.000	0.22	9.89	9.67	0.99	0.97	0.04	0.08	0.0 [h,k,l]
i 7	′ P 1 2/m 1	0.000	0.21	9.88	9.67	0.99	0.97	0.04	0.08	0.0 [-k,-h,-l]
1 8	8 C 1 2/m 1	0.000	-0.01	9.72	9.73	0.97	0.97	0.07	0.07	0.2 [h-k,h+k,l]
! 9) C 1 2/m 1	0.000	-0.02	9.71	9.73	0.97	0.97	0.07	0.07	0.2 [h+k,-h+k,l]
10) P-1	0.000	0.21	9.91	9.70	0.99	0.97	0.03	0.08	0.0 [h,k,l]
¦										

and

	Spacegroup	TotProb SysAbsProb	Reindex	Conditions	
	<p 2="" 21="" 41=""> (92) <p 2="" 21="" 43=""> (96)</p></p>	0.823 0.823 0.823 0.823		00l: l=4n, h00: h=2n (zones 1,2) 00l: l=4n, h00: h=2n (zones 1,2)	
	<p 2="" 21="" 4=""> (90)</p>	0.095 0.095		h00: h=2n (zone 2)	
 	<p 2="" 21="" 42=""> (94)</p>	0.077 0.077		00l: l=2n, h00: h=2n (zones 1,2)	

Thus suggesting #92 or #96 - the latter of which agrees with the PDB deposition. However, running CORRECT in #96 and specifying 103 103 130 90 90 90 as cell parameters, we obtain:

REFINED PARAMETERS: DISTANCE BEAM ORIENTATION CELL AXIS USING 220320 INDEXED SPOTS STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.17 STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.14 CRYSTAL MOSAICITY (DEGREES) 0.191 DIRECT BEAM COORDINATES (REC. ANGSTROEM) -0.004790 0.004009 1.021014 1027.19 DETECTOR COORDINATES (PIXELS) OF DIRECT BEAM 1064.23 DETECTOR ORIGIN (PIXELS) AT 1036.79 1056.20 CRYSTAL TO DETECTOR DISTANCE (mm) 209.52 LAB COORDINATES OF DETECTOR X-AXIS 1.000000 0.000000 0.000000 LAB COORDINATES OF DETECTOR Y-AXIS 0.000000 1.000000 0.000000 LAB COORDINATES OF ROTATION AXIS 0.999996 0.000901 0.002534 COORDINATES OF UNIT CELL A-AXIS COORDINATES OF UNIT CELL B-AXIS 21.926 53.087 85.553 3.794 87.060 -54,995 COORDINATES OF UNIT CELL C-AXIS -128.21218,926 21.115 REC. CELL PARAMETERS 90.000 90.000 0.009704 0.009704 0.007616 90,000 UNIT CELL PARAMETERS 103.045 103.045 131.310 90.000 90.000 90.000 E.S.D. OF CELL PARAMETERS 2.1E-01 2.1E-01 2.1E-01 0.0E+00 0.0E+00 0.0E+00 SPACE GROUP NUMBER 96 b ISa а 7.890E+00 8.793E-04 12.01 Friedel pairs are treated as different reflections. NOTE: SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION RESOLUTION NUMBER OF REFLECTIONS COMPLETENESS R-FACTOR R-FACTOR COMPARED I/SIGMA R-meas Rmrgd-F Anomal Si LIMIT OBSERVED UNIQUE POSSIBLE OF DATA observed expected Corr 6.23 16770 2083 3017 98.9% 5.2% 6.1% 16752 26.20 5.7% 2.6% 55% 1 4.43 30598 5392 5393 100.0% 5.8% 6.2% 30596 25.25 6.3% 3.0% 50% 1 3.62 39822 6992 6994 100.0% 6.9% 6.6% 39820 22.27 7.6% 4.0% 32% 0¦ 3.14 49620 8240 8242 100.0% 9.2% 8.7% 49619 17.14 10.1% 6.2% 19% 0 9379 9379 100.0% 17.7% 2.81 59388 18.1% 59387 10.44 19.3% 12.3% 0% 0 23.6% 2.56 65652 10308 10310 100.0% 34.6% 39.1% 65652 6.08 37.7% - 1% 0! 71744 11258 100.0% 71.3% 83.8% 71744 - 2% 2.37 11259 3.23 77.6% 52.1% 0; 2.22 74888 12082 99.9% 111.0% 116.9% 74888 1.98 121.2% 86.9% 2% 0, 12065 65727 12386 12874 96.2% 65517 168.0% 148.4% 2.09 151.3% 176.1% 1.12 - 3% 0 474209 79003 79550 99.3% 10.3% 473975 9.44 17.2% 13% Θ, 11.0% 11.3% total NUMBER OF REFLECTIONS IN SELECTED SUBSET OF IMAGES 492346 NUMBER OF REJECTED MISFITS 17898 NUMBER OF SYSTEMATIC ABSENT REFLECTIONS 141 NUMBER OF ACCEPTED OBSERVATIONS 474307 NUMBER OF UNIQUE ACCEPTED REFLECTIONS 79022

which is much worse than the spacegroup 19 statistics (compare the ISa values - they differ by a factor of 2 !) so there may be something wrong with some assumptions we were making \dots

Identifying a possible cause

The easiest thing one can do is to inspect INTEGRATE.LP - this lists scale factor, beam divergence and mosaicity for every reflection. There's a jiffy called "scalefactors" which grep's the relevant lines from INTEGRATE.LP ("scalefactors > scales.log"). This shows the scale factor (column 3):

demonstrating that "something happens" between frame 372 and 373 (of course one has to look at the table to find the exact numbers).

It should be noted that any abrupt change in conditions during the experiment is going to spoil the resulting data in one way or another. This is most true for a SAD experiment which is supposed to give accurate values for the tiny differences in intensities between Friedel-related reflections.

A solution

At this point it is good to look at the data for experiment E2. Here, we find exactly the same problems of bad ISa and high "STANDARD DEVIATION OF SPOT POSITION (PIXELS)" when reducing frames 1-591 in one run of xds.

With this knowledge, we are lead, for E1, to reduce frames 1-372 and 373-592 separately, in spacegroup 96. For E2, we use frames 1-369 and 371-591, respectively. Frame E2-370 has a very high scale factor so we leave it out altogether.

This is also a good time to closely inspect the headers of the frames:

啥 grepbinary-files=text DATE j1603b3PK_1_E1_37?.img	
gives	
j1603b3PK_1_E1_370.img:DATE=Sun Jun 27 08:55:51 2004; j1603b3PK_1_E1_371.img:DATE=Sun Jun 27 08:56:00 2004; j1603b3PK_1_E1_372.img:DATE=Sun Jun 27 08:56:08 2004; j1603b3PK_1_E1_373.img:DATE=Sun Jun 27 09:19:45 2004; j1603b3PK_1_E1_374.img:DATE=Sun Jun 27 09:20:52 2004; j1603b3PK_1_E1_375.img:DATE=Sun Jun 27 09:20:10 2004; j1603b3PK_1_E1_376.img:DATE=Sun Jun 27 09:20:18 2004; j1603b3PK_1_E1_377.img:DATE=Sun Jun 27 09:20:58 2004; j1603b3PK_1_E1_378.img:DATE=Sun Jun 27 09:21:08 2004; j1603b3PK_1_E1_378.img:DATE=Sun Jun 27 09:21:17 2004;	

and

% grepbinary-files=text DATE j1603b3PK_1_E2_3[67]?.img	
gives	
	-1
'j1603b3PK_1_E2_366.img:DATE=Sun Jun 27 08:55:15 2004;	÷
j1603b3PK_1_E2_367.img:DATE=Sun Jun 27 08:55:23 2004;	- 1
j1603b3PK_1_E2_368.img:DATE=Sun Jun 27 08:55:32 2004;	1
'j1603b3PK_1_E2_369.img:DATE=Sun Jun 27 08:56:19 2004;	÷
j1603b3PK 1 E2 370.img:DATE=Sun Jun 27 08:56:28 2004;	- 1
1603b3PK 1 E2 371 img:DATE=Sun Jun 27 09:19:26 2004;	1
j1603b3PK_1_E2_372.img:DATE=Sun Jun 27 09:19:34 2004;	÷
j1603b3PK_1_E2_373.img:DATE=Sun Jun 27 09:20:22 2004;	- 1
j1603b3PK_1_E2_374.img:DATE=Sun Jun 27 09:20:30 2004;	1
j1603b3PK_1_E2_375.img:DATE=Sun Jun 27 09:20:38 2004;	÷
j1603b3PK_1_E2_376.img:DATE=Sun Jun 27 09:20:47 2004;	- 1
	- I

thus proving that both datasets were interrupted for 20 minutes around frame 370.

The really weird thing here is that both datasets appear to be collected at the same time, but at different wavelengths (E1 at 0.9794 Å, E2 at 0.9184 Å), and yet the individual parts merge as follows: using the following XSCALE.INP:

UNIT_CELL_CONSTANTS=103.316 103.316 131.456 90.000 90.000 90.000 SPACE_GROUP_NUMBER=96 OUTPUT_FILE=temp.ahkl INPUT_FILE=../e1_372/XDS_ASCII.HKL INPUT_FILE=../e1_373-592/XDS_ASCII.HKL INPUT_FILE=../e2_1-369/XDS_ASCII.HKL INPUT_FILE=../e2_371-591/XDS_ASCII.HKL

and running xscale, we obtain in XSCALE.LP:

i –	CORRELATIONS BETWEEN INPUT DATA SETS AFTER CORRECTIONS										
-											
DATA	SETS	NUMBER OF COMMON	CORRELATION	RATIO OF COMMON	B-FACTOR						
#i	#j	REFLECTIONS	BETWEEN i,j	INTENSITIES (i/j)	BETWEEN i,j						
:											
1	2	15943	0.978	1.0002	0.0106						
! 1	3	22366	1.000	1.0012	-0.0008						
i 2	3	15801	0.977	0.9983	0.0557						
1	4	15648	0.979	0.9988	0.0541						
2	4	14862	0.999	1.0024	-0.0007						
i 3	4	15524	0.978	0.9999	-0.0015						
1											

which means that $e1_{1-372}$ correlates well (1.000) with $e2_{1-369}$, and $e1_{373-59}$ well (0.999) with $e2_{371-591}$, but the crosswise correlations are consistently low (0.978, 0.977, 0.979, 0.978). The adjustment to the error model proves this:

1				÷
a	b	ISa	ISa0 INPUT DATA SET	1
6.112E+00	1.429E-03	10.70	22.37/e1_1-372/XDS_ASCII.HKL	
1.074E+01	1.825E-03	7.14	23.79/e1_373-592/XDS_ASCII.HKL	1
5.707E+00	1.621E-03	10.40	22.82/e2_1-369/XDS_ASCII.HKL	÷
8.547E+00	1.796E-03	8.07	24.17/e2_371-591/XDS_ASCII.HKL	-
1				1
				-

telling us that "if we merge these datasets together, their error estimates have to be increased a lot". However, if we switch to

UNIT_CELL_CONSTANTS=103.316							
OUTPUT_FILE=firstparts.ahkl INPUT_FILE=/e1_1-372/XDS_ASCII.HKL INPUT_FILE=/e2_1-369/XDS_ASCII.HKL							
OUTPUT_FILE=secondparts.ahkl INPUT_FILE=/e1_373-592/XDS_ASCII.HKL INPUT_FILE=/e2_371-591/XDS_ASCII.HKL							
we obtain							
a b ISa ISa0 INPUT DATA SET 6.120E+00 3.673E-04 21.09 22.37 ./e1_1-372/XDS_ASCII.HKL 5.713E+00 3.819E-04 21.41 22.82 ./e2_1-369/XDS_ASCII.HKL 5.639E+00 3.151E-04 23.72 23.79 ./e1_373-592/XDS_ASCII.HKL 5.289E+00 3.258E-04 24.09 24.17 ./e2_371-591/XDS_ASCII.HKL							

proving that the second parts of datasets E1 and E2 should be treated separately from the first parts.

Upon inspection of the cell parameters, we find that the cell axes of the second "halfs" are shorter by a factor of 0.9908 when compared with the first parts. This suggests that they were collected at a longer wavelength! But then the wavelength values in the headers are most likely completely wrong: we can speculate that the two first parts were collected at the SeMet peak wavelength, and the two second parts at the inflection wavelength.

The almost-simultaneous DATEs in the headers may be explained by an inverse-beam measuring strategy which alternatingly collects 4 frames in one orientation as E1, then rotates the spindle by 180° and collects 4 frames into E2. For some reason, the beamline software did not write the correct wavelength into the headers.

So this little detective work appears to tell us what happened in the morning of Sunday June 27, 2004 at ALS beamline 821.

Further analysis of datasets E1 and E2

Here, we try to learn more about the constituents of "firstparts".

Running "xdsstat > XDSSTAT.LP" in the e1_1-372 and e2_1-369 directories, we obtain statistics output not available from CORRECT. We open XDSSTAT.LP with the CCP4 program "loggraph", and take a look at misfits.pck, rf.pck, and the other files produced by xdsstat, using VIEW or XDS-Viewer:

Reflections and misfits, by frame - looks normal

Intensity and sigma by frame - looks normal

"partiality" and profile agreement, by frame - looks good but it's clear that the profiles at high frame number agree worse with the average profiles, possibly due to radiation damage

 $R_meas,$ by frame, clearly showing good R_meas in the middle of the dataset

 R_d - an R-factor which directly depends on radiation damage. This is calculated as a function of frame number difference and the linear rise indicates significant radiation damage that should be correctable in XSCALE, using the CRYSTAL_NAME keyword.

misfits mapped on the detector, showing ice rings.

 R_meas mapped on the detector, showing elevated R_meas at the location of the ice rings.

Solving the structure

Although we could now think of using these two files ("firstparts" and "secondparts" merged) and assume that they are peak and inflection wavelengths, it appears more reasonable to try and solve the structure with SAD - which means using "firstparts" only.

First try

Let's look at the XSCALE statistics for "firstparts":

Ē	NOTE:	Frie	del pair	 s are trea	ted as differ	ent reflec	tions.						
İs	UBSET OF T	NTENSITY D	ΔΤΔ WTTH	I STGNAL/NO	TSE >= -3 0 A	S FUNCTION	OF RESOLU	ITTON					
.R	ESOLUTION	NUMBER	OF REFL	ECTIONS	COMPLETENESS	R-FACTOR	R-FACTOR	COMPARED	I/SIGMA	R-meas	Rmrad-F	Anomal	Si
i.	LIMIT	OBSERVED	UNIQUE	POSSIBLE	OF DATA	observed	expected		_,		j .	Corr	
1													i
÷	9.40	6122	844	883	95.6%	2.9%	3.5%	6111	54.76	3.2%	1.4%	79%	2
1	6.64	12037	1611	1621	99.4%	2.9%	3.6%	12035	51.54	3.1%	1.5%	80%	2
÷	5.43	15348	2065	2086	99.0%	3.5%	3.7%	15347	47.79	3.7%	1.7%	78%	2
÷	4.70	18714	2487	2498	99.6%	3.0%	3.7%	18711	49.55	3.2%	1.5%	72%	1;
÷	4.20	21104	2797	2821	99.1%	3.1%	3.7%	21102	47.24	3.3%	1.7%	72%	1
į.	3.84	23316	3095	3117	99.3%	3.8%	4.0%	23313	42.74	4.1%	2.1%	65%	1
÷.	3.55	25693	3345	3366	99.4%	4.4%	4.5%	25693	37.93	4.7%	2.6%	50%	1
1	3.32	28017	3633	3653	99.5%	5.2%	5.2%	28015	32.89	5.6%	3.6%	40%	1
÷	3.13	30266	3842	3848	99.8%	7.2%	7.2%	30264	25.87	7.7%	4.8%	36%	1
i.	2.97	32595	4114	4118	99.9%	10.4%	10.4%	32594	19.26	11.1%	7.7%	30%	11
÷	2.83	34384	4315	4320	99.9%	14.3%	14.8%	34382	14.88	15.3%	10.3%	20%	0;
1	2.71	35654	44/5	44/8	99.9%	18.3%	19.1%	35652	12.13	19.5%	13.1%	15%	Θ¦
÷	2.61	3/30/	4705	4/10	99.9%	27.5%	28.8%	3/304	8.44	29.4%	19.8%	11%	01
÷	2.51	38997	4893	4896	99.9%	35.5%	38.0%	38997	6.78	38.0%	26.0%	10%	0
1	2.43	40036	5026	5027	100.0%	51.3%	55.1%	40032	4.92	54.8%	38.0%	2%	0 i
1	2.35	39975	5180	5222	99.2%	/1.3%	68.9%	39967	3.78	/6.4%	52.7%	21%	01
i.	2.28	42041	5385	5423	99.3%	93.7%	93.1%	42037	2.90	100.3%	66.7%	11%	0,
1	2.21	43012	5538	5541	99.9%	85./%	88.3%	43011	2.8/	91.8%	58.8%	10% 10%	U.
÷	2.10	42010	5/01	5/03	100.0%	115.0%	152 00	42007	2.13	167 00	03.4%	4%	01
÷	2.10	20990	70605	2912	93.3%	140.1%	103.9%	50944	16 00	10/.0%	12 0%	5∛ 20%	11
÷	LOLAL	000224	/0005	/9243	99.3%	0./%	1.2%	000118	10.08	1.2%	12.0%	29%	± ;
- ۱													'

The anomalous correlation is good at low resolution, though not outstanding. At high resolution it rises again but this is presumably due to the ice rings.

I like to use hkl2map which runs SHELXC, SHELXD and SHELXE from its GUI. Before doing so, we have to run XDSCONV with the following XDSCONV.INP:

INPUT_FILE=firstparts.hkl OUTPUT_FILE=temp.hkl SHELX

First, the shelxc output which shows that these data are quite good:

And then we show the result of 100 trials at substructure solution of shelxd, trying to find 3 Se atoms at 30 - 3.3Å resolution (I also tried $3.0 \ 3.1 \ 3.2 \ 3.4 \ 3.5$ Å but 3.3Å was best).

This looks reasonable although the absolute value of CCall is so low that there is little hope that the structure can be solved with this amount of information. And indeed, SHELXE did not show a difference between the two hands (in fact we even know that the "original hand" is the correct one since the inverted had would correspond to spacegroup #92 !).

Second try: correcting radiation damage by 0-dose extrapolation

Since we noted significant radiation damage we could try to correct that. All we have to do is ask XSCALE to do zero-dose extrapolation:

I				
UNIT_CELL_CONSTANTS=103.316 10	93.316 131.45	5 90.000 90.00	0 90.000	1
SPACE_GROUP_NUMBER=96				1
				1
OUTPUT FILE=temp abk1				1
TNDIT ET E $/01$ 1 272/VDS ASCTT				1
CDVCTAL NAME -	LINC			1
INPUT_FILE=/e2_1-369/XDS_ASCII	I.HKL			1
CRYSTAL_NAME=a				1
				1

As a result we obtain:

RESULTS FROM ZERO-DOSE EXTRAPOLATION OF REFLECTION INTENSITIES for reference on this subject see: K. Diederichs, S. McSweeney & R.B.G. Ravelli, Acta Cryst. D59, 903-909(2003). "Zero-dose extrapolation as part of macromolecular synchrotron data reduction" Radiation damage can lead to localized modifications of the structure. To correct for this effect, XSCALE modifies the intensity measurements I(h,i) by individual correction factors, exp{-b(h)*dose(h,i)} where h,i denotes the i-th observation with unique reflection indices h, and dose(h,i) the X-ray dose accumulated by the crystal when the reflection was recorded. Assuming a constant dose for each image (dose_rate), the accumulated dose when recording <code>image_number(i)</code>, on which I(h,i) was observed, is then dose(h,i) = starting_dose + dose_rate * (image_number(i)-first_image) The decay factor b(h) is determined from the assumption that symmetry related reflections in a data set taken from the same crystal should have the same intensity after correction. Moreover, b(h) is assumed to be the same for Friedel-pairs and independent of the X-ray wavelength. To avoid overfitting the data, XSCALE starts with the hypothesis that b(h)=0 and rejects this assumption if its probability is below 10.0%. CORRELATION OF COMMON DECAY-FACTORS BETWEEN INPUT DATA SETS First INPUT_FILE= ../e2_1-369/XDS_ASCII.HKL
 CRYSTAL_NAME= a
Second INPUT_FILE= ../e1_1-372/XDS_ASCII.HKL CRYSTAL_NAME= a RESOLUTION NUMBER CORRELATION LIMIT OF PAIRS FACTOR 9.40 210 0.955 6.64 441 0.955 5.43 587 0.940 4.70 692 0.969 4.20 750 0.949 3.84 836 0.920 3.55 809 0.942 3.32 775 0.925 3.13 663 0.888 2.97 557 0.837 375 2.83 0.681 302 0.812 2.71 212 0.625 2.61 0.508 2.51 163 2.43 95 0.291 2.35 139 0.722 2.28 110 0.688 2.21 91 0.734 2.16 0.561 88 2.10 54 0.126 7949 0.788 total X-RAY DOSE PARAMETERS USED FOR EACH INPUT DATA SET CRYSTAL_NAME= a DOSE_RATE STARTING_DOSE NAME OF INPUT FILE initial initial refined refined 0.000E+00 8.557E+00 1.000E+00 1.000E+00 ../e1_1-372/XDS_ASCII.HKL 0.000E+00 0.000E+00 1.000E+00 1.024E+00 ../e2_1-369/XDS_ASCII.HKL STATISTICS OF 0-DOSE CORRECTED DATA FROM EACH CRYSTAL NUNIQUE = Number of unique reflections with enough symmetryrelated observations to determine a decay factor b(h)

We not that the "CORRELATION OF COMMON DECAY-FACTORS BETWEEN INPUT DATA SETS" are really high which confirms the hypothesis that this is a valid procedure to perform.

Comparison of the last table with that of the previous paragraph, i.e. without zero-dose extrapolation, shows that the I/sigma, the anomalous correlation coefficients and the SigAno are significantly higher. Does this translate into better structure solution? It does:

Automatically building the main chain of 452 out of 519 residues

Based on the sites obtained by SHELXD, we run

This already builds a significant number of residues, but also gives an improved list of beavy atom sites - there are actually 6 sites instead of the 5 that SHELXD wrote out (ves

heavy atom sites - there are actually 6 sites instead of the 5 that SHELXD wrote out (yes, we had asked SHELXD for 3 sites since there are 3 Met residues, but SHELXD as always was smarter than we are). We "mv raddam.hat raddam_fa.res" for another run of SHELXE:

shelxe.beta -a -q -h6 -b -s0.585 -m40 -n3 raddam raddam_fa

and get

```
452 residues left after pruning, divided into chains as follows:
A: 15
        B: 5 C: 22 D: 22 E: 27 F: 62 G: 263 H: 36
CC for partial structure against native data = 39.83 %
     .....
Global autotracing cycle
<wt> = 0.300, Contrast = 0.447, Connect. = 0.705 for dens.mod. cycle 1
<wt> = 0.300, Contrast = 0.660, Connect. = 0.781 for dens.mod. cycle 2
<wt> = 0.300, Contrast = 0.723, Connect. = 0.801 for dens.mod. cycle 3
<wt> = 0.300, Contrast = 0.762, Connect. = 0.807 for dens.mod. cycle 4
Pseudo-free CC = 64.88 %
<wt> = 0.300, Contrast = 0.785, Connect. = 0.810 for dens.mod. cycle 5
<wt> = 0.300, Contrast = 0.806, Connect. = 0.813 for dens.mod. cycle 6
<wt> = 0.300, Contrast = 0.820, Connect. = 0.815 for dens.mod. cycle 7
<wt> = 0.300, Contrast = 0.831, Connect. = 0.817 for dens.mod. cycle 8
v_{\rm wt} = 0.300, Contrast = 0.839, Connect. = 0.819 for dens.mod. cycle 9 Pseudo-free CC = 69.74 %
<vt> = 0.300, Contrast = 0.845, Connect. = 0.820 for dens.mod. cycle 10<vt> = 0.300, Contrast = 0.849, Connect. = 0.821 for dens.mod. cycle 11
<wt> = 0.300, Contrast = 0.851, Connect. = 0.822 for dens.mod. cycle 12
<wt> = 0.300, Contrast = 0.853, Connect. = 0.823 for dens.mod. cycle 13
<wt> = 0.300, Contrast = 0.854, Connect. = 0.823 for dens.mod. cycle 14
Pseudo-free CC = 70.80 %
<wt> = 0.300, Contrast = 0.854, Connect. = 0.824 for dens.mod. cycle 15
<wt> = 0.300, Contrast = 0.855, Connect. = 0.824 for dens.mod. cycle 16
<wt> = 0.300, Contrast = 0.855, Connect. = 0.824 for dens.mod. cycle 17
<wt> = 0.300, Contrast = 0.854, Connect. = 0.824 for dens.mod. cycle 18
<wt> = 0.300, Contrast = 0.854, Connect. = 0.824 for dens.mod. cycle 19
Pseudo-free CC = 71.03 \%
<wt> = 0.300, Contrast = 0.854, Connect. = 0.824 for dens.mod. cycle 20
Estimated mean FOM and mapCC as a function of resolution
d inf - 4.62 - 3.64 - 3.17 - 2.88 - 2.67 - 2.51 - 2.38 - 2.27 - 2.18 - 2.11
<FOM> 0.736 0.786 0.768 0.721 0.701 0.681 0.618 0.595 0.587 0.540
<mapCC> 0.862 0.932 0.946 0.934 0.924 0.924 0.922
                                                          0.913 0.882 0.858
Ν
                      4214
                              4135
         4206
               4227
                                     4185
                                            4207
                                                   4292
                                                           4406
                                                                  4320
                                                                         3702
Estimated mean FOM = 0.674 Pseudo-free CC = 71.18 %
Density (in map sigma units) at input heavy atom sites
 Site
                                   occ*Z
                                            density
       0.2276
                0.7578
                         0.1189
                                  34.0000
                                             29,98
   1
       0.1568
                0.6345
                         0.3049 32.2898
   2
                                             30.44
                0.5344
                         0.2160
                                 32.2388
   3
       0.1767
                                             29.67
   4
      0.3059
                0.4535
                         0.1297 26.0746
                                             23.51
                         0.1410
   5
       0.0280
                0.8243
                                  22.7324
                                             21.02
      0.0383
                0.9748
                         0.0492 21.5050
   6
                                             21.18
                        z h(sig) near old near new
Site
    0.1569 0.6345 0.3048 30.4 2/0.02 9/13.36 3/15.73 2/19.52 7/22.13
0.2278 0.7578 0.1188 30.0 1/0.02 1/19.52 6/21.97 7/22.48 9/25.02
  2
                                            1/19.52 6/21.97 7/22.48 9/25.02
                                            9/2.90 1/15.73 4/19.45 2/26.88
  3
    0.1767
             0.5345
                     0.2158 29.7
                                    3/0.03
                             23.5 4/0.07
                                            3/19.45 9/21.16 8/26.49 5/26.83
  4
    0.3060
             0.4536
                     0.1292
                                            8/2.63 8/15.66 5/15.88 6/19.80
    0.0382
             0.9748
                     0.0490
                                    6/0.02
  5
                              21.2
                                            5/19.80 8/21.59 7/21.87 2/21.97
                     0.1416
                                    5/0.08
  6
    0.0278
             0.8240
                             21.1
                             -5.0
                                    5/21.86 6/21.87 1/22.13 2/22.48 8/22.57
     0.1854
             0.9571
                     0.1787
  7
     0.0427
             0.9993
                     0.0530
                              -5.0
                                    6/2.62 5/2.63 8/15.31 5/15.66 6/21.59
  8
                             -4.7 3/2.91 3/2.90 1/13.36 4/21.16 2/25.02
    0.1787 0.5611
                     0.2228
 _____
```

At this point the structure is obviously solved, and we could use buccanneer or Arp/wArp to add side chains and the rest of the model. 3-fold NCS surely helps!

Could we do better?

Yes, of course (as always). I can think of four things to try:

- an optimization round of running xds for the two datasets
- using a negative offset for STARTING_DOSE in XSCALE.INP, as documented in the XSCALE wiki article.
- use MERGE=TRUE in XDSCONV.INP. I tried it and this gives 20 solutions with CCall+CCweak > 25 out of 1000 trials, whereas MERGE=FALSE (the default) gives only 4 solutions!

adding the "secondparts" data assuming this is a longer wavelength

But this time we learn that one has to take special care of the data in particular when they were measured by someone else who does not tell us everything we need to know. Second, zero-dose extrapolation made the day.

Availability of data

The XDS/XSCALE - produced data are available at 1y13-raddam-F.mtz (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/1y13xds-1y13-raddam-F.mtz) (amplitudes) and 1y13-raddam-I.mtz (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared /1y13xds-1y13-raddam-I.mtz) (intensities). In addition I provide [1] (ftp://turn5.biologie.unikonstanz.de/pub/xds-datared/e1_1-372_XDS_ASCII.HKL.bz2) and [2] (ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/e2_1-369_XDS_ASCII.HKL.bz2) to enable investigating based on the original XDS data.

Retrieved from "http://strucbio.biologie.uni-konstanz.de/xdswiki/index.php/1Y13"

• This page was last modified on 17 March 2011, at 21:18.