HOWTO write a DHS

by James Holton
Disclaimer: This is not, necessarily, an official guide to writing a DHS. The official guide is the DCSS Administrator’s manual. This document is the result of my personal experience adapting the SSRL DCSS control system on the ALS beamline 8.3.1. My goal was to get something working quickly with a minimum amount of effort. I am proud to say that success was achieved in two weeks with the creation of less than 1000 lines of new code. At the time of this writing, the DCSS system has been in use on 8.3.1 for six months and has yet to cause any problems worth mentioning.
1) Tell the poor, lost soul who is configuring DCSS (Ken Frankel) four things:

1) a one-word name you want your DHS to be called. (i.e. “beamline”)

2) the hostname of the computer you will be running the DHS on. (i.e. beamline.bl831.als.lbl.gov)

3) a list of one-word names for the “devices” you will be controlling. For example:

shutter

gonio_phi

sample_x

sample_y

sample_z
detector_z

detector_2theta

camera_zoom

energy

theta2

beam_steer_horiz

beam_steer_vert

divergence_horiz

divergence_vert

pinhole_vert

pinhole_horiz

beamstop_vert

beamstop_horiz

Al

Au

Se

Backlight

Diode

Idiode

Imono_Out

Imono_In

Izero
Ifluorescence

Note that these things don’t have to correspond to actual devices, just “objects” the user might want to control. For example, there is no zoom motor on the cameras in 8.3.1, but requests to move “camera_zoom” cause the pinhole stage to move up or down, switching from high-mag to low-mag cameras.
4) Classify each device as a motor, shutter or “ion gauge” when you give the above list to the DCSS set-up guy. You also might want to tell him what units you plan to use so he can edit the GUI.
2) Connect to the TCP/IP port 14242 on the computer running the DCSS program. On beamline 8.3.1, this is bl831.als.lbl.gov.

3) You will immediately receive a 200-byte ASCIIZ string:

“stoc_send_client_type\0\0\0\0\0\0\0\0\0…”
 read 200 bytes from the socket.

a) the trailing end of the string (“…”) can be garbage, but is usually zeroes.

b) ALL messages to and from DCSS are 200 bytes in length. There are newer versions of the protocol, but the 200-bytes-at-a-time one (version 1.0) is the easiest to implement in the widest range of languages and will always be supported on the hardware side.
4) Respond with a 200-byte ASCIIZ string:

“htos_client_is_hardware beamline\0…”

a) you MUST pad up to 200 bytes. It can be garbage, but you want at least one zero at the end of the meaningful text.

b) The word “beamline” is a name for your DHS that you gave to the DCSS configuration guy.
5) Now send a 200-byte message describing each “motor” device you are controlling. For example:
“htos_configure_device energy 12398.42 20000 2000 1 100000 1 0 0 1 0 0 0\0…”

the meaning of each word is defined in the DCS Administrator’s guide. Only the first four are really important, but I will summarize them here:

htos_configure_device

indicates the first mentioning of a motor

energy

the name for the motor you gave in step 1)

12398.42

the current position of this motor

20000

the forward limit

2000

the reverse limit

1

the “scale” of your units (just use 1)

100000

the maximum speed (just use something big)

1

the maximum acceleration (just use 1)

0

I don’t know

1

use the forward limit
1

use the reverse limit

0

I don’t know

0

I don’t know

0

I don’t know
As usual, you must pad the message up to 200 bytes and use a zero byte to end the meaningful string.

If you “use” the limits (words 10 & 11), then DCSS will not ask you to move this motor beyond the numbers listed in words 4 & 5.

6) Now send a 200-byte message describing each “shutter” device you are controlling. For example:

“htos_configure_shutter shutter open close open\0…”

or

“htos_configure_shutter Se open close open\0…”

where:

htos_configure_shutter
indicates the first mentioning of a shutter
shutter

the name for the shutter you gave in step 1)

open

name for the “open” position of this shutter
closed

name for the “closed” position of this shutter
open

the current position of this shutter
Although you can get a away with using “in” and “out” or “on” and “off” for shutter devices, there are certain situations in DCSS where this doesn’t work, so just use “open” and “closed” for everything. NOTE: that’s “closed” and not “close”.

7) You do NOT need to send a configuration message for an ion gauge.

8) Now, you should wait for DCSS to tell you to do something. You will receive a lot of different messages from DCSS. All of them will be exactly 200 bytes in length and the meaningful text ends with a zero byte. Most of these messages you can ignore. The ones that are important are listed below.
9) Be prepared for this message to arrive from the socket you created in step 2).

“stoh_start_motor_move energy 12398.41\0…”

where:

stoh_start_motor_move

a command to move something
energy

the name for the motor you gave in step 1)

12398.41

the desired position of this motor
Obviously, this means you should do whatever it is you do to change the photon energy to 12398.41 eV. You are also expected to keep DCSS informed of the progress of this move. Start with this:
“htos_motor_move_started energy 12398.41\0…”

This message tells DCSS that you did, in fact, understand the command and you’re moving the energy. The user will see the energy indicator light up in their GUI. When you are done moving the energy, send this message:

“htos_motor_move_completed energy 12398.41 normal\0…”

where:

htos_motor_move_completed
indicates that you are done
energy

the name for the motor you gave in step 1)

12398.41

the current position of this motor
normal

opportunity to gripe

The last word can be anything you want, but any word other than “normal” will be reported to the user as an “error” and data collection will be aborted.
It is VERY important to have exactly one “completed” message for every “started” message that you send. DCSS will get really confused if you don’t, so construct your code appropriately. However, you are free to send “started”-“completed” messages whenever you want. DCSS doesn’t care if it gets info on moves it didn’t ask for.

10) If a move is taking a while, and you want to tell DCSS (aka the user) about it, then send this message:

“htos_update_motor_position energy 12398.41 normal\0…”

where:

htos_update_motor_position
indicates something has drifted or is moving
energy

the name for the motor you gave in step 1)

12398.41

the current position of this motor
normal

opportunity to gripe
You can issue an “update” message whenever you want. The motor doesn’t have to be in a commanded move. DCSS will just update the display to reflect the new values you report. However, if the last “status” word is anything other than “normal”, then DCSS will abort data collection.
11) You also have some commands to deal with about shutters:

“stoh_set_shutter_state shutter close\0…”

where:

stoh_set_shutter_state
move a shutter
shutter

the name for the shutter you gave in step 1)

close

the desired position
Once you have made sure that the shutter called “shutter” is closed, you should send back the message:
“htos_report_shutter_state shutter closed\0…”

where:

htos_report_shutter_state
indicates something has happened with a shutter
shutter

the name for the shutter you gave in step 1)

closed

the new position
Note, that’s “closed” and not “close”, but “open” still results in “open”.

It isn’t absolutely required that you send this message if the shutter is already closed, but it is probably a good idea. Things like the detector cover can get stuck, and the user may re-command it to close in frustration, and want to see some kind of feedback.

You can (and should) report changes in shutter state whether DCSS asked for them or not. For example, the user will definitely expect to see the shutter open and close during an exposure, but the shutter control is usually done on the hardware level. (see below)
12) You’ve got analog sensors, so here’s how you report them:

“stoh_read_ion_chambers 2.0 0 i_fluor\0…”

where:

stoh_read_ion_chambers
requests a sensor reading
2.0

the duration of the measurement (seconds)

0

repeating measurement (1 or 0)
i_fluor

the name for the gauge you gave in step 1)

Fortunately, the current version of DCSS never asks for a repeating ion gauge measurement, so you can ignore word 3. However, particularly for fluorescence scans, you really want to make sure you average/count for exactly 2.0 seconds, or at least report the right averaging time in your reply:
“htos_report_ion_chambers 2.01 i_fluor 123456\0…”

where:

htos_report_ion_chambers
delivering a measured sensor value
2.01

the actual averaging/counting time (seconds)
i_fluor

the name for the gauge you gave in step 1)

123456

the measured value
Note: DCSS does seem to expect integer values for these counts. This is probably being written out of the code, but, for safety’s sake, I just multiplied any analog readings by 106 and rounded off to the nearest integer.
13) Finally, you’ve got one “complex” move to do to collect protein crystallographic data:

“stoh_start_oscillation gonio_phi shutter 1.00 10.0\0…”

where:

stoh_start_oscillation
requests rotation-camera exposure
gonio_phi

the name for a motor you gave in step 1)

shutter

the name for a shutter you gave in step 1)

1.00

the distance traveled by gonio_phi (degrees)

10.0

the duration of the exposure (seconds)

The oscillation is expected to begin at the current position for gonio_phi. That is, DCSS is asking for the crystal to be evenly exposed to x-rays (at a constant angular velocity) between the current position of gonio_phi and 1.00 degrees “forward” from the current position.
A common implementation of this is a “running start” motor move of gonio_phi, where the phi motor is first backed up and then accelerated forward to reach the desired speed at the “start” encoder position. The motor controller itself is usually instructed to open the shutter as soon as the phi axis reaches the “start” point and to close it when it reaches the “end”.
You can also safely assume that the only motors requested for an exposure will be gonio_phi or omega (if you have it), and that the only shutter request you will ever get is “shutter” or “NULL”. A “NULL” shutter means do the exposure move, but don’t ever open the shutter. These are used to calibrate the dark current of the CCD detector.

The response that DCSS expects for the stoh_start_oscillation command is a move_completed for the gonio_phi motor. Therefore, all you have to do is make sure the gonio_phi move you use for the exposure generates a proper motor_move_started and motor_move_completed message.
14) Every once in a while, you will get one of these:

“stoh_correct_motor_position energy -1.21\0…”

where:

stoh_correct_motor_position
 a command to calibrate something
energy

 the name for the motor you gave in step 1)

-1.21

 the shift to the new actual position of this motor
This message is used by DCSS to recalibrate motor positions. The most common one is to recalibrate gonio_phi by +/- 360 degrees.

You do not need to send a reply to this message.

15) That’s it! You’re done. The only thing you might want to add is a persistent reconnection procedure. If DCSS ever goes down, your DHS should be smart enough to re-establish the connection to port 14242 on the server and keep trying to connect indefinitely. Its okay to disconnect and reconnect if something weird or unexpected happens in your DHS. DCSS will handle DHS clients coming up and down gracefully. This makes the whole control system robust to restarts of individual components, and allows you to upgrade your DHS without restarting the whole control system.
